
Reduced Product Combination of Abstract

Domains for Shapes ⋆

Antoine Toubhans1, Bor-Yuh Evan Chang2, and Xavier Rival1

1 INRIA, ENS, CNRS, Paris, France
2 University of Colorado, Boulder, Colorado, USA

toubhans@di.ens.fr, bec@cs.colorado.edu, rival@di.ens.fr

Abstract. Real-world data structures are often enhanced with addi-
tional pointers capturing alternative paths through a basic inductive
skeleton (e.g., back pointers, head pointers). From the static analysis
point of view, we must obtain several interlocking shape invariants. At
the same time, it is well understood in abstract interpretation design
that supporting a separation of concerns is critically important to de-
signing powerful static analyses. Such a separation of concerns is often
obtained via a reduced product on a case-by-case basis. In this paper,
we lift this idea to abstract domains for shape analyses, introducing a
domain combination operator for memory abstractions. As an example,
we present simultaneous separating shape graphs, a product construction
that combines instances of separation logic-based shape domains. The
key enabler for this construction is a static analysis on inductive data
structure definitions to derive relations between the skeleton and the
alternative paths. From the engineering standpoint, this construction
allows each component to reason independently about different aspects
of the data structure invariant and then separately exchange informa-
tion via a reduction operator. From the usability standpoint, we enable
describing a data structure invariant in terms of several inductive defi-
nitions that hold simultaneously.

1 Introduction

Shape analyses aim at inferring precise and sound invariants about programs
manipulating complex data structures so as to prove safety and functional prop-
erties [20,10,2,5]. Such data structures typically mix several independent char-
acteristics, which makes abstraction hard. For instance, an extreme case would
be that of a binary tree with parent pointers, satisfying a balancing property
and sortedness of data fields, and the property that all nodes contain a pointer
to some shared record. Some shape analysis tools rely on a hard-coded ab-
straction [10,2], while others require some specialization of a generic abstract

⋆ The research leading to these results has received funding from the European Re-
search Council under the FP7 grant agreement 278673, Project MemCAD and the
United States National Science Foundation under grant CCF-1055066.

VMCAI 2013.

c©Springer-Verlag Berlin Heidelberg 2013.

2 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

typedef struct node {
struct node ⋆ l;
struct node ⋆ r;
struct node ⋆ p;
struct tree ⋆ h;

} ⋆ node;
typedef struct tree {

struct node ⋆ r;
int i;

} ⋆ tree;
typedef struct iterator {

struct tree ⋆ t;
struct node ⋆ c;

} ⋆ iter;

(a) Type definitions

b

b

iter

b

1

tree

b

b

tree

0x0

b
. . .

b
. . .

b

tree

b
. . .

b
. . .

b

tree

b
. . .

b
. . .

b
. . .

tree

(b) A concrete instance

Fig. 1. A complex tree structure

domain, either via user-supplied instrumentation predicates or inductive defini-
tions [20,5]. In either case, when the data structures of interest feature many
independent characteristics as in the aforementioned example, the user-supplied
specifications or hard-coded abstractions should ideally reflect some level of sep-
aration of concerns, for example, between balancing properties, parent pointers,
and properties over keys.

Intuitively, a separation of concerns in a shape analysis means that it should
be possible for conceptually independent attributes of a data structure to be
understood and treated separately by both the tool and the tool user. As an
example, Fig. 1 shows an iterator over a binary tree with parent pointers. The
node data-type (Fig. 1(a)) features left (l), right (r), and parent (p) pointers,
as well as a special field h pointing to an enclosing record; the purpose of this
record is to keep track of the root node of the whole structure (field r) and
the number of active iterators (field i). Iterator iter encloses pointers to the
structure being iterated over (field t) and to the current position (field c). All
nodes satisfy two independent invariants: (1) p fields point to their parent and
(2) h fields point to the enclosing record tree.

Reduced product [8] of abstract domains [7] is a framework achieving a separa-
tion of concerns in a static analyzer by combining several abstractions D0, . . . ,Dk

and expressing conjunctions of abstract properties of the form p0∧. . .∧pk, where
pi is an abstract element of abstract domain Di. This construction has been
abundantly used to combine numerical abstract domains into more expressive
ones without having to design a monolithic domain that would be overly complex
to set up and implement. For example, the Astrée analyzer [3] has been built
as such a combination of numeric and symbolic abstract domains [9]; reduced
product is implemented as a generic operation over abstract domains. While
shape analyses often decompose abstract properties using separating conjunc-
tion [10,2,5] introduced in [19], few analyses explicitly introduce non-separating
conjunction, as this operation is viewed as more complex: for instance, updates
need be analyzed for all conjunction elements. Non-separating conjunctions tend
to be used in a local manner in order to capture co-existing views over small

Reduced Product Combination of Abstract Domains for Shapes 3

blocks [18,14]. The work presented in [15] uses global conjunctions (in addi-
tion to other refinements), yet does not turn it into a general abstract domain
operation.

In this paper, we present the following contributions:
– We set up a framework for reduced product of memory abstractions in

Sect. 3.
– We instantiate our framework to separating shape graphs in Sect. 4.
– We extend this instantiation to cope with user-supplied inductive definitions

in Sect. 5; in that case, the reduction functions use information computed
by static analysis of the inductive definitions.

Moreover, the reduced product combinator was implemented in the MemCAD
analyzer (http://www.di.ens.fr/˜rival/memcad.html), and experiments on re-
duction strategies are reported in Sect. 6.

2 Analysis of an iterator over a tree with parent pointers

In this section, we overview the abstraction of the structure shown in Fig. 1
using conjunctions of simpler properties and how an iteration procedure, with
imperative update, can be analyzed. For simplicity in presentation, we assume
variables tree and iter have global scope. Variable tree points to the header
structure of type tree, while iter points to an iterator of type iterator. The
tree structure can be captured by an inductive definition that can be given as
a parameter to a parametric abstract domain such as that of Xisa [5,6]. For
instance, the inductive definition below captures both the tree structure, the
consistency of the parent pointers, and the fact that each node is separated, as
materialized by the separating conjunction operator applied between fields and
inductive calls:

α · ιp(β) ::= α = 0 ∧ emp
∨

α 6= 0 ∧

(

α · l 7→ δl ∗ α · r 7→ δr ∗ α · p 7→ β ∗ α · h 7→ _

∗ δl · ιp(α) ∗ δr · ιp(α)

)

The parameter β captures the address to which the p field of the α parameter
should point. However, field h is not constrained, and the property that all h
fields should point to enclosing tree record is not captured by this definition.
The inductive definition below captures the property that all h should point
to some given address represented by ǫ (whereas it ignores the parent pointer
constraint on p fields):

α · ιh(ǫ) ::= α = 0 ∧ emp
∨

α 6= 0 ∧

(

α · l 7→ δl ∗ α · r 7→ δr ∗ α · p 7→ _ ∗ α · h 7→ ǫ

∗ δl · ιh(ǫ) ∗ δr · ιh(ǫ)

)

We can express the fact that α represents the address of a pointer to a node of
the structure of Fig. 1 by α · ιp(β)∧α · ιh(ǫ) where β and ǫ represent the address
of the parent pointer and of the enclosing record, respectively. We shall express
such conjunctions as pairs of shape graphs, using a product [8] abstraction.

4 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

void next(){
if (iter→ c has a child) {
iter→ c = left child

} else{
go up to the first node with

a not yet visited right child
iter→ c = that right child

}
}

void replace(node n) {
n→ l = iter→ c→ l;
n→ r = iter→ c→ r;
n→ p = iter→ c→ p;
n→ h = iter→ c→ h;
if (iter→ c has a parent){

update it to point n where iter→ c is
} else { iter→ t→ r = n; }

}
void main() {
node n = malloc(sizeof(struct node));
while (iter→ c 6= null&& . . .) { next(); }
if (iter→ t→ i == 1) { replace(n); }

}

Fig. 2. An iteration using an iterator followed by a node replacement.

In the following, we consider the C program shown in Fig. 2. The code is
simplified by summarizing some parts with pseudo-code. Function main uses
the iterator to walk up to a randomly defined point of the structure, by making
a series of left, right, and up steps determined by the tree structure. When no
other iterator is active on iter → t, then the replacement can be performed
safely, by updating fields of the node being inserted in the structure, and also
fields in the parent/enclosing record depending on the position of the iterator.
Note that this code reads and updates both h and p fields.

An invariant at the exit of the loop in function main can be represented by
a conjunction of shape graphs as shown in the figure below:

iter

tree

t

c

r

i

ιp(null) ιp(β) ιp(β)

∧

iter

tree

t

c

r

i

ιh(ǫ) ιh(ǫ) ιh(ǫ)

The left and right shape graphs can be expressed in the abstract domain of [5],
individually using only ιp and ιh as domain parameters, respectively. Edges
abstract pairwise disjoint memory regions. Points-to edges (marked as thin
edges) describe individual cells Thick edges inductively abstract (potentially
empty) summarized memory regions, which could be either full structures or
structure segments: for instance, the left shape graph expresses that field iter→
c points to a node of the tree pointed to by tree→ r.

While both components of that invariant can be expressed as a shape graph
in the abstract domain of [5], it is not possible to infer either without reasoning
about parent pointers, as function next may follow unbounded upward paths in
the tree. Similarly, the preservation of structural invariants in replace requires
reasoning about both p and h. However, ιp ignores information about h and
vice versa for ιh; thus, neither component can perform all those steps on its
own. Therefore the product analysis must organize information exchange among
both components, which corresponds to a reduction operation. For instance, we

Reduced Product Combination of Abstract Domains for Shapes 5

consider assignment iter→ c = iter→ c→ p in next. In the right component
(ιh), no information about p is known so the analysis of this operation would lose
all precision when it fails to materialize this field, whereas the left component (ιp)
will materialize p with no loss in precision. The left component will also come up
with the property that when iter→c has a parent, then either iter→c→p→l

or iter→ c→ p→ r is equal to iter→ c (i.e., the current node is a child of
its parent) that would allow a precise materialization in the right component.
Similar cases occur in the analysis of replace. To conclude, we need to set up
a language to express such simple constraints, to design operators to extract
them, and to constrain abstract values with them, and to identify when such
information exchange should be performed.

3 Interfaces for memory abstractions

In this section, we layout our framework for defining reduced products of mem-
ory abstractions. Our goal is to define a flexible abstract domain combination
operator, so we begin by defining a generic interface that we expect memory
abstractions to implement.

memories M ∋ m ::= (e, h)
environments E ∋ e : X ⇀fin V

heaps H ∋ h : A ⇀fin V

variables x ∈ X

values v ∈ V

addresses a ∈ A

fields f, g, . . . ∈ F

Concrete memories. We use a direct model
of concrete memories m, which consist of
an environment and a heap (shown inset).
A concrete environment e is a finite map
from program variables to values. A con-
crete heap h is as a finite map from ad-
dresses to values. We assume that the set
of addresses is a subset of the set of values (i.e., A ⊆ V). Fields f, g, . . . are
treated as numerical offsets where we write a+f for the address that is an offset
f from base address a (i.e., (a+ f) ∈ A).

3.1 Memory abstract domains

memories m♯ ::= (e♯, h♯)
environments e♯ : X ⇀fin V

♯

heaps Ds ∋ h♯ ::= ⊥ | · · ·
concretization γs : Ds → P(H × V)
valuations ν ∈ V

assignment assign : lvals× exprs × Ds → Ds

conditional guard : exprs× Ds → Ds

widening ▽ : Ds × Ds → Ds

An abstract memory state
m♯ describes a set of
concrete memory states
(shown inset). As such,
it should abstract both
heap addresses along with
stored values. To abstract
addresses and values, we
let V

♯ = {α, β, . . .} be a set
of symbolic variables. An abstract environment e♯ ∈ E

♯ = X → V
♯ then maps

each variable into an abstraction of its address. To express the consistency
between an abstract environment and a concrete environment, we need a val-
uation ν that relates an abstract address to a concrete one. An abstract heap

6 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

h♯ ::= abstract heaps γs(h
♯)

emp empty heap { ([], ν) }

| α · f 7→ β single cell { ([ν(α) + f 7→ ν(β)], ν) }

| h
♯
0 ∗ h

♯
1

disjoint regions { (h0 ⊎ h1, ν) | (h0, ν) ∈ γs(h
♯
0
) and (h1, ν) ∈ γs(h

♯
1
) }

| h♯ ∧ P with constraint { (h, ν) | (h, ν) ∈ γs(h
♯) and ν |= P }

P ::= pure predicates ν |= P

α = 0 | α 6= 0 | P0 ∧ P1 | . . .

Fig. 3. A shape abstract domain based on exact separating shape graphs.

h♯ ::= abstract heaps γs(h
♯)

{α · f Z⇒ β, . . . } set of may points-to { (h, ν) | a+ f 7→ v ∈ h implies

α · f Z⇒ β ∈ h♯ and
a ∈ ν(α) and v ∈ ν(β) }

Fig. 4. A shape abstract domain based on points-to graphs.

h♯ expresses pointer relationships between abstract addresses, so it abstracts a
set of concrete-heap–valuation pairs. A shape abstract domain is a set Ds of
abstract heaps, together with a concretization function γs and sound abstract
operators. Among the abstract operators, we include operators to compute ab-
stract post-conditions, such as assign for assignments and guard for conditional
guards. We also include a widening operator ▽ that joins abstract states while
enforcing termination of abstract iteration [7]. All of these operators are re-
quired to satisfy the usual soundness conditions—that is, they ensure that no
concrete behavior will be lost in the abstract interpretation. For example, the
widening operator ▽ should soundly over-approximate unions of concrete states
(i.e., γs(h

♯
0)∪γs(h

♯
1) ⊆ γs(h

♯
0▽h

♯
1) for all abstract heaps h♯

0 and h♯
1). We also let

⊥ denote the least element of the memory abstraction, which should have the
empty concretization (i.e., γs(⊥) = ∅).

Example 1 (Exact separating shape graphs). In Fig. 3, we describe exact sepa-
rating shape graphs, which is a memory abstraction with no summaries. We
consider separating shape graphs with inductive summaries in Sect. 5. An ab-
stract heap h♯ is a formula syntactically formed according to the given grammar.
We define the concretization of h♯ inductively on the formula structure in the
rightmost column. Intuitively, an abstract heap is simply a finite separating con-
junction [19] of must points-to predicates along with pure constraints over heap
values. The formula emp is the abstract heap corresponding to the concrete
empty heap []. Thus, notice γs(emp) is independent of the choice of valuation
ν. A must points-to α ·f 7→ β corresponds to a singleton heap whose address and
contents are given by the valuation ν. Here, we let valuations be functions from
symbolic variables to concrete values (i.e., ν : V

♯ → V). As usual, the formula

h♯
0 ∗ h♯

1 joins disjoint abstract sub-heaps. In the concrete, we write h0 ⊎ h1 to
join sub-heaps if their domains are disjoint (and undefined otherwise). Finally,

Reduced Product Combination of Abstract Domains for Shapes 7

the formula h♯ ∧ P conjoins a pure constraint; we write ν |= P to say valuation
ν semantically entails pure predicate P .

Example 2 (May points-to graphs). As another example, we formalize a memory
abstraction based on points-to graphs as one obtains from Andersen’s analysis [1]
in our framework (Fig. 4). An abstract heap h♯ is a set of may points-to edges
of the form α · f Z⇒ β. For this abstraction, an abstract location α corresponds
to a set of concrete addresses (thus, ν : V

♯ → P(V)). A concrete heap h is in the
concretization of an abstract heap h♯ if and only if for all concrete cells a+f 7→ v
in h, there exists a corresponding may points-to edge in the abstract heap h♯

as given by the valuation ν. In the literature, there are usually some additional
constraints placed on abstract locations. These restrictions on abstract locations
can be reflected as constraints on valuations ν, such as non-empty corresponding
concrete addresses (i.e., |ν(α)| ≥ 1 for all α ∈ dom(ν)) and disjoint abstract
locations (i.e., ν(α) ∩ ν(β) = ∅ for all α, β ∈ dom(ν)). Sometimes, abstract
locations are also classified as non-summary versus summary. A non-summary
abstract location α means we restrict ν such that |ν(α)| = 1. In contrast to exact
separating shape graphs, may points-to graphs can never give precise information
about the presence of a cell. For example, observe that the empty concrete heap
[] is in the concretization of all may points-to graphs.

3.2 Products of memory abstractions

Shape domains implementing the interface described in Sect. 3.1 can be com-
bined into product abstractions in a straightforward manner. Let us assume two
shape abstract domains D0 and D1 are given. Then, D×

def

= D0 × D1 has a con-
cretization function γ× : D× → P(H♯ × V) defined by (h♯, ν) ∈ γ×(h

♯
0, h

♯
1) ⇐⇒

(h♯, ν) ∈ γ0(h
♯
0) ∧ (h♯, ν) ∈ γ1(h

♯
1). This amounts to expressing non-separating

conjunctions of abstract predicates of D0 and D1.
A direct implementation of the abstract operators (assign, guard,▽, . . .) can

be obtained by composing the underlying operators pair-wise. However, the
resulting analysis will not take advantage of the information available into one
abstract domain in order to refine the facts in the other domain.

To overcome that limitation, we now propose to extend the product abstract
domain with a reduction operation. A classical (and trivial) reduction operator

would map, for example, (⊥, h♯
1) into (⊥,⊥). In this paper, we describe much

more powerful reduction operators for memory abstractions that allow us to
transfer non-trivial information from one shape abstract domain to another (and
vice versa).

To extend domain D0×D1 into a reduced product domain D⊲⊳
def

= D0 ⊲⊳ D1, we
need to augment it with a reduction operator π : D⊲⊳ → D⊲⊳, which satisfies the
following soundness condition: ∀h♯

0 ∈ D0, h
♯
1 ∈ D1, γ×(h

♯
0, h

♯
1) ⊆ γ×(π(h

♯
0, h

♯
1)).

constraints F ⊆ Pf

extract extract : Ds → P(Pf)
constrain constrain : Ds × P(Pf) → Ds

To implement a reduction operator
π, we need be able to extract infor-
mation from one domain and forward
that information as a constraint into

8 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

the other. Thus, we need to set up a language of constraints Pf and to extend
the abstract domain interface with operators extract to extract constraints from
an abstract value and constrain to constrain an abstract value with a constraint.
The language Pf must be the same for every abstract shape domains. In prac-
tice, the user has to provide an implementation of those two operators in order
to be able to use our framework. Given such operators, a reduction from the
left domain into the right domain, for example, is defined as follows:

π0→1(h
♯
0, h

♯
1)

def

= (h♯
0, constrain1(h

♯
1, extract0(h

♯
0))) .

We subscript the operators to make explicit the domain to which they belong.
To specify the soundness requirements, we need a concretization relation for
constraints. We write h, ν |= F when the pair (h, ν) satisfies all the constraints
F (i.e., we interpret a set of constraints conjunctively). We can now specify
the soundness conditions for the domain operators extract and constrain: for all
h♯ ∈ Ds and all F ∈ P(Pf),

∀(h, ν) ∈ γs(h
♯), h, ν |= extract(h♯) (1)

∀(h, ν) ∈ γs(h
♯), h, ν |= F =⇒ (h, ν) ∈ γs(constrain(h

♯,F)) (2)

Under these soundness conditions, the operator π0→1 defined above is sound
(and similarly for the analogous operator π0←1). In the above, we have focused
on the soundness requirements of these operators and set up a framework for
discussing them. While any sequence of extract and constrain satisfying these
properties would yield a sound result, we have not yet discussed how to do so
efficiently. And in practice, these operations must be carefully crafted to transfer
just the necessary information, and we must apply them parsimoniously or on-
demand to avoid making the analysis overly expensive and cluttering abstract
values with facts that are not actually useful for the analysis [9]. To do so
requires considering specific instantiations of this framework.

4 Instantiation to separating shape graph abstractions

In this section, we consider a first instantiation of our framework for defining
reduced products of memory abstract domains. We focus on a product of two
instances of Dg. While this example may look overly simple at first, it illustrates
a large part of the issues brought up by the analysis discussed in Sect. 2. For
the moment, inductive predicates are fully unfolded and thus not present (issues
specific to inductive predicates are discussed in Sect. 5). Let us consider the
abstract conjunction shown in Fig. 5. While expression x→l→p→h→i cannot
be evaluated in either component of such an abstract state, all concrete memories
corresponding to their conjunction would allow that expression to evaluate, as
all such concrete memories would let α and δ represent the same address. In
this section, we show how reduction allows us to perform such reasoning and to
strengthen the abstract heaps of Fig. 5.

Reduced Product Combination of Abstract Domains for Shapes 9

&x α
l

p

h h i
∧

&x α δ
l

p

h h

i

Fig. 5. A simple reduction example

p ::= paths
| ∅ empty path
| f (∈ F) single field
| p · p concatenation

a ::= formulas (a ∈ Pf)
| α · p ⊲ β path equality
| α · p ⊲ null path to null

(a) Syntax

h, ν |= α · ∅ ⊲ null ⇐⇒ ν(α) = 0
h, ν |= α · ∅ ⊲ β ⇐⇒ ν(α) = ν(β)
h, ν |= α · f ⊲ null ⇐⇒ h(ν(α) + f) = 0
h, ν |= α · f ⊲ β ⇐⇒ h(ν(α) + f) = ν(β)

h, ν |= α · p0 · p1 ⊲ β̄ (where β̄ ∈ {null} ∪ V
♯)

⇐⇒ ∃δ ∈ V
♯,

{

h, ν |= α · p0 ⊲ δ
∧ h, ν |= δ · p1 ⊲ β̄

(b) Semantics

Fig. 6. Language of path constraints for reducing between separating shape graphs

4.1 A language of constraints based on path predicates

First of all, we notice that if (h, ν0) belongs to the concretization of the left
component, then h(h(ν0(α)+l)+p) = ν0(α), or equivalently, that dereferencing
l and then p from address α gets us back to α. In the right component, the
same sequence of dereferences yields δ: if (h, ν1) belongs to the concretization
of the right component, then h(h(ν1(α) + l) + p) = ν1(δ). This suggests that
enforcing a simple path reachability equation computed in the left component
into the right component will allow us to conclude the equality of α and δ, that
is, that they represent the same concrete values and can be merged.

Therefore, we include in the language of constraints to be used for reduction
a way to express path predicates of the form α · f0 · . . . · fn ≡ β (which we write
down as α · f0 · . . . · fn ⊲ β). A path p is defined by a possibly empty sequence
of fields, denoting field dereferences from a node, as shown in Fig. 6(a). A path
formula a expresses that a series of dereferences described by a path will lead
to read either the value denoted by some node β (α · p ⊲ β) or the null value
(α·p⊲null). Thus, we obtain the set Pf defined in Fig. 6(a). Their concretization
is defined in Fig. 6(b).

α β
l r r h

As an example, path formula α · l · r · r ·
h ⊲ β expresses that β can be reached from α
after dereferencing fields l, r, r, and h in that
order, as shown in the inset figure (not all fields are represented). Intuitively
path formulas of the form α · p ⊲ β allow us to express reachability properties, as
commonly used in, for example, TVLA [20].

4.2 Reduction operators for shape graphs

At this stage, we need to set up operators extract and constrain for the shape
graph abstract domain mentioned in Sect. 3.1 using the path language of Sect. 4.1.

10 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

Triggering of the reduction process. As discussed earlier, reduction should be
performed only when needed [9]. In the case of the product of shape abstract
domains, information may need to be sent from one domain to another when a
memory cell update or read cannot be analyzed due to a lack of pointer infor-
mation:
– to read l-value α · f, we need to find an edge of the form α · f 7→ β in at

least one of the components of the product; then this domain ensures the
existence of the cell (even if the others fail to materialize such an edge);

– to update l-value α·f, we need to find such a points-to edge in all components
of the product; indeed, if it was not possible to do so in Di, then, conservative
analysis of the update would require dropping all the information available
in Di since any cell may be modified from Di’s point of view; this would be
an unacceptable loss in precision.

Therefore, a on-demand reduction strategy is to trigger when either one of the
components fails to materialize an edge for an update or when all components
fail to materialize an edge for a read (in the same way as for unfolding in [6]).
While this is the basis of a minimal reduction strategy, more aggressive strategies
can be used such as:
– an on-read strategy which attempts to reduce path constraints about any

node involved in a read operation;
– a maximal strategy which attempts to reduce all available path constraints

about all nodes, at all times.
An empirical evaluation of these strategies will be presented in Sect. 6.

Computation of path information. Operator extract : Ds −→ P(Pf) should ex-
tract sound sets of constraints, satisfying soundness property (1). In the case of
abstract domain Dg, extract(h♯) could simply collect all predicates of the form
α · f ⊲ β where predicate α · f 7→ β appears in h♯:

extract(α0 · f0 7→ β0 ∗ . . . ∗ αq · fq 7→ βq) = {αi · fi ⊲ βi | 0 ≤ i ≤ q}

Collecting all such constraints would be almost certainly too costly, as it leads
to exporting all information available in h♯. Since our reduction reduction is
triggered by a materialization operation, we only care about finding some field
from some node α in either component of the product. Only constraints locally
around this node are relevant, which restricts what needs to be exported. Thus,
in practice, extract and constrain are computed locally. In the example of Fig. 5,
constraint α · l · p ⊲ α can be extracted from the left conjunct.

Enforcing path information. If α · p ⊲ β and α · p ⊲ γ, then β and γ denote the
same concrete value, hence these two nodes can be merged. This rule (R⊲≡)
forms the basis of an operator constrain satisfying soundness property (2). In
the example of Fig. 5, this operator allows us to merge nodes α and δ in the
right component, thanks to constraint α · l · p ⊲ α inferred by extract in the left
component, as shown in the previous paragraph. This reduction allows us to
materialize x→ l→ p→ h→ i.

Reduced Product Combination of Abstract Domains for Shapes 11

h♯
ι := h♯ (Fig. 3) points-to, emp

| h♯
ι ∗ h♯

ι separating conj.
| α · ι(β) inductive predicate
| α · ι(β) ∗= α′ · ι(β′) segment predicate

(a) Abstract heaps in D 〈ι〉

• if h♯ ∈ Dg, γ〈ι〉(h
♯) = γg(h

♯)
• if (h, ν) ∈ γ〈ι〉(h

♯
u)

and h♯
 h♯

u

then (h, ν) ∈ γ〈ι〉(h
♯)

(b) Concretization γ〈ι〉

Fig. 7. A shape abstract domain based on separating shape graphs

5 Instantiation to separating shape graphs with inductive

summaries

In this section, we consider a more powerful memory abstract domain, with
inductive summaries for unbounded memory regions [5,6].

5.1 A memory abstraction with inductive summaries

As noticed in Sect. 2, unbounded heap regions can be summarized using induc-
tive predicates. Given an inductive definition ι, inductive predicate α · ι(β) [6],
expresses that α points to a heap region containing an inductive data structure
expressed by ι. Similarly, α · ι(β) ∗= α′ · ι(β′) [6] abstracts segments of such
data-structures, that is, heap regions containing a data structure with a hole.
Inductive and segment predicates can be unfolded using a syntactic unfolding
relation , which basically unrolls inductive definitions. Therefore, assuming
ι is an inductive definition, the abstract values of domain D〈ι〉 are defined as
a superset of those of Dg, shown in Fig. 7(a). Concretization γ〈ι〉 also extends
γg, and relies on the unfolding relation to unfold arbitrarily many times all in-
ductive predicates into an element with no inductive predicates, which can be
concretized using γg.

5.2 An extended language of constraints

In the following, we consider the abstract state shown in Fig. 8, which can be
observed at the beginning of the replace function of Sect. 2. We let y (resp., x)
be a shortcut for iter→ c (resp., tree→ r). At this point, the analysis should
update field y→p→l, so this field should be materialized in all elements of the
product. Fig. 8(a) shows the abstract state before the analysis of this operation.
At this stage, we notice that field y→p is materialized as a points-to predicate in
both sides of the conjunction, but y→p→l is materialized in neither. To obtain
this materialization, the analysis first needs to unfold the segment backwards
(i.e., at its destination node’s site) from the node corresponding to the value
of y. The triggering of this unfolding in D〈ιp〉 relies on the typing of inductive
parameters proposed in [6] (left conjunct in Fig. 8). That unfolding actually
generates three cases: either the segment is empty, or node α is the left child
of its parent, or α is the right child of its parent. As the empty segment case
is trivial (it would entail that α and η are equal so that both x and y hold

12 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

&x &y

η α

β

i

ιp(null) ιp(β)

ιp(α)

ιp(α)

l

r

p
h

∧

&x &y

ǫ ζ

δ

ξ

i

ιh(δ) ιh(δ)

ιh(δ)

ιh(δ)

l

r

p

h

(a) Initial abstract state

&x

&y

η β

α

γ

i

ιp(null) ιp(γ)

ιp(β)

ιp(α)

ιp(α)l

r

p
h

l

r

p
h

∧

&x

&y

ǫ π

ζ

δ

ξ

i

ιh(δ) ιh(δ)

ιh(δ)

ιh(δ)

ιh(δ)l

r

p

h

l

r

p

h

(b) Abstract state after backward unfolding

Fig. 8. Reduction example

the same value), and the two latter cases are similar, we focus on the second
one (that of a left parent). This unfolding, however, cannot be triggered in
D〈ιh〉, as this domain does not capture the back-pointer tree invariant; thus the
D〈ιh〉 components needs some guidance from D〈ιp〉 before it can proceed with the
unfolding. Intuitively, D〈ιp〉 carries the information that any node χ in the tree
that has a left child is such that χ · l · p ≡ χ. Applying this principle to node π
shows that the following steps should be carried out, in the right conjunct:
– the segment of the right conjunct that ends in ζ also needs to be unfolded

since ζ · p ⊲ ξ (as shown in the right conjunct in Fig. 8);
– after unfolding, π · l · p ⊲ ξ, thus node ξ is actually equal to node π.

This example shows that the language of constraints introduced in Sect. 4.1
needs to be extended with universally quantified predicates over summarized
regions. As such predicates may be expressed over unbounded paths, we use
general regular expressions over the set of fields (Fig. 9(a)) instead of only
sequences of offsets. Moreover, the quantification may also need be done on
segments. Therefore, we augment Pf with the S∀·, · predicates shown in
Fig. 9(a): intuitively, S∀[p, a[X]](α, S) means that a[χ] holds for any node χ
that can be reached from α following path expression p (i.e., α · p ⊲ δ holds)
but cannot be reached from any node β ∈ S following path expression p (i.e.
β · p ⊲ δ does not hold). The variable X is a bound variable whose scope is the
disjunctive path formula a. Thus, such predicates allow us to express not only
properties about inductively-summarized structures but also about segments of
such structures [5,6]. The semantics of that construction is shown in Fig. 9(b),
extending the definition of Fig. 6(b).

α

β

δ

l

r
l

r
l

r

h

h

h h

For instance, the path quantification for-
mula S∀[(l+r)⋆, X ·h⊲δ](α, {β}) holds true
for the element of Dg below and expresses
that any node in the tree stored at address

Reduced Product Combination of Abstract Domains for Shapes 13

p ::= paths
| ∅ empty path
| f (∈ F) single field
| p · p concatenation
| p+ p disjunction
| p⋆ sequences

a ::= . . .

| a ∨ a disjunction
| S∀[p, a[X]](α, S) quantification

(a) Extended syntax

h, ν |= α · p0 + p1 ⊲ β

⇐⇒ h, ν |= α · p0 ⊲ β ∨ h, ν |= α · p1 ⊲ β
h, ν |= α · p⋆ ⊲ β

⇐⇒ ∃n ∈ N , h, ν |= α · pn ⊲ β

h, ν |= a0 ∨ a1

⇐⇒ h, ν |= a0 or h, ν |= a1

h, ν |= S∀[p, a[X]](α, S)

⇐⇒ ∀δ ∈ V
♯,

{

α · p ⊲ δ ⇒ a[δ]
∨ ∃β ∈ S, β · p ⊲ δ

(b) Extended semantics

Fig. 9. Extended language of path constraints

α and that is not in the sub-tree of address
β for some β ∈ S has an h field pointing to
address δ, as shown in the inset figure.

5.3 Extraction of path predicates from inductive definitions

We now need to extend operators extract and constrain so as to allow communica-
tion from and to D〈ι〉. Compared to Dg, the main issue is that path information
now has to be computed about inductive summaries; thus this computation
logically requires inductive reasoning.

For instance, the property that any node α of a tree with parent pointers
that has a left child is such that α · l · p ≡ α needs be computed by induction
over the ιp inductive predicate describing that tree. This inductive reasoning
can actually be done once and for all about inductive ιp so that it can then be
applied to any of its occurrences. Therefore, operator extract should rely on the
results of a pre-analysis of inductive definition ιp that is computed before the
static analysis of the program (i.e., it may be performed only once per inductive
definition used in the analyzer). Moreover, we remark that such properties can
be derived by induction over the inductive definition, which suggests a fixed-
point computation, that is, an abstract interpretation based static analysis of
ιp—a parameter to the abstract domain used to static analyze the program.

In the following, we label inductive predicates with a bound on the induction
depth so as to express the soundness of the inductive definition analysis. For
instance, the inductive definition ιp becomes the following:

α · ι0p(β) α = 0 ∧ emp

α · ιi+1
p (β) α = 0 ∧ emp

∨

α 6= 0 ∧

(

α · l 7→ δl ∗ α · r 7→ δr ∗ α · p 7→ β ∗ α · h 7→ _

∗ δl · ιip(α) ∗ δr · ιip(α)

)

Then, the analysis should compute a sequence of sets of path predicates (Ai)i∈N

such that at any rank i, if (h, ν) ∈ γs(α · ιip(β)), then h, ν |= Ai.

14 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

Analysis algorithm. It proceeds by a classical abstract interpretation over the
inductive structure of ι, using an abstract domain of path predicates. More
precisely, given Ai, the computation of Ai+1 involves the following steps:

– Base rules (with no inductive call) can be handled using the extract function
shown in Sect. 4.2. For instance, considering ι we get A0 = {α · ∅ ⊲ null}.

– Inductive rule α · ιi+1(β) M ∗ π1 · ιi(ρ1) ∗ . . . ∗ πk · ιi(ρk) (where M
contains no inductive predicate) requires the following steps to be performed:
1. by instantiation of Ai and application of extract to M , the analysis generates

extract(M) ∪ Ai[π1, ρ1/π, ρ] ∪ . . . ∪ Ai[πr, ρr/π, ρ];
2. then, the analysis introduces quantified path predicates using the following

principle: if α · f1 ⊲ β1, . . . , α · fp ⊲ βp and a[X/α] holds, then so does

S∀[(f1 + . . .+ fp)
⋆, a[X]](α, {β1, . . . , βp});

3. last, the analysis eliminates intermediate variables (π1, . . . , πp, β1, . . . , βp)
after applying transitivity principles to the set of path predicates:

α · p ⊲ β ∧ β · q ⊲ δ =⇒ α · p · q ⊲ δ
S∀[p, a](β, S) ∧ S∀[p, a](α, S′) =⇒ S∀[p, a](β, (S \ {α}) ∪ S′) if α ∈ S.

The resulting set of path predicates Bi+1 collects sound path constraints over
induction depths 1, . . . , i+ 1.

– Over-approximation of the resulting path predicates and of those in the
previous iterate Ai, using an abstract join over sets of path predicates, defined
using a rewrite relation which maps pairs of path formulas into weaker path

formulas, that is, such that ∀j ∈ {0, 1}, a0, a1
⊔
7→ a⊔ ∧ h, ν |= aj =⇒ h, ν |= a⊔.

This property is guaranteed using rules such as:

α · p ⊲ β, α · q ⊲ β
⊔
7→ α · p+ q ⊲ β

S∀[p, a](α, S), α · ∅ ⊲ β
⊔
7→ S∀[p, a](α, S) if β ∈ S

S∀[p, a](α, S), S∀[p, a′](α, S′)
⊔
7→ S∀[p, b](α, S ∪ S′) if a, a′

⊔
7→ b

Then, Ai+1 is defined as {a | ∃(ai, ai+1) ∈ Ai × Bi+1, ai, ai+1
⊔
7→ a}.

Furthermore, at each step, regular expressions may be simplified. Termina-

tion is ensured by the definition of a
⊔
7→ operator that avoids generating too large

formulas and hence is a widening. The inductive definitions analysis returns a
sound result, as all steps are sound, that is, they preserve the aforementioned
invariant property:

Theorem 1 (soundness). This analysis algorithm is sound:
– For all i ∈ N and for all (h, ν) ∈ γs(α · ιi(β)), h, ν |= Ai holds.
– Thus, after convergence to A∞, we have: ∀(h, ν) ∈ γs(α · ι(β)), h, ν |= A∞.

Path predicates derived from segments predicates. Segment predicates may be
considered inductive predicates with a slightly different set of base rules for the
end-point [6]. Therefore, the same inductive analysis applies to segments as well.

In particular, if we consider segment π · ιp(ρ) ∗= η · ιp(ε), the analysis com-
putes the iterates below:

Reduced Product Combination of Abstract Domains for Shapes 15

iteration i iterate Ai

0 {π · ∅ ⊲ η, ρ · ∅ ⊲ ε}

1

π · (l+ r)⋆ ⊲ η , ε · p⋆ ⊲ ρ

π · ∅ ⊲ η ∨ π · p ⊲ ρ , ε · ∅ ⊲ ρ ∨ ε · (l+ r) ⊲ η

S∀[(l+ r)⋆, X · l · p ⊲ X ∨X · l ⊲ 0 ∨X · l ⊲ η](π, {η, 0})

S∀[(l+ r)⋆, X · r · p ⊲ X ∨X · r ⊲ 0 ∨X · r ⊲ η](π, {η, 0})

S∀[p⋆, X · p · (l + r) ⊲ X ∨X · p ⊲ ρ](ε, {ρ})

S∀[p⋆, X · (l+ r) ⊲ η](ε, {ρ}) ...

2

π · (l+ r)⋆ ⊲ η , ε · p⋆ ⊲ ρ

π · ∅ ⊲ η ∨ π · p ⊲ ρ , ε · ∅ ⊲ ρ ∨ ε · (l+ r) ⊲ η

S∀[(l+ r)⋆, X · l · p ⊲ X ∨X · l ⊲ 0 ∨X · l ⊲ η](π, {η, 0})

S∀[(l+ r)⋆, X · r · p ⊲ X ∨X · r ⊲ 0 ∨X · r ⊲ η](π, {η, 0})

S∀[p⋆, X · p · (l + r) ⊲ X ∨X · p ⊲ ρ](ε, {ρ})

3 A2 fixpoint reached

5.4 Reduction operators in the presence of inductive predicates

First, we note that the triggering and computation of reduction based on rule
(R⊲≡) given in Sect. 4.2 still apply, with one minor caveat: when α · p ⊲ β and
α · p ⊲ γ, then β and γ can be merged only if path p is rigid, that is, involves no
disjunction or .⋆ unbounded sequence. A supplementary rule (RS∀) is needed
to treat universally quantified path predicates.

Triggering of the reduction process. The triggering condition for such a reduction
is actually similar to before: when a field fails to be materialized at node α in the
right conjunct, the reduced product searches for universal properties of the nodes
of the structure to which α belongs. Thus it searches for universally quantified
path properties from nodes corresponding to “ancestors” of α. In the example
of Fig. 8, we notice that we need information about node ξ, which is part of the
structure pointed to by ǫ; as ǫ and η both correspond to the value stored in x,
thus denote equal values, information should be read in D〈ιp〉 from η.

Computation of universally quantified path information. Operator extract should
simply instantiate the results of the pre-analysis of inductive definitions shown
in Section 5.3. In the case of the example shown in Fig. 8, node η satisfies:

S∀[(l + r)⋆, X · l · p ⊲ X ∨X · l ⊲ null](η, {null})

Enforcing universally quantified path information. Reduction rule (RS∀) boils
down to the following principle: if α · p ⊲ δ and S∀[p, a[X]](α, S), then either
a[δ] holds or there exists β ∈ S such that β · p ⊲ δ. Besides, when S = {null},
we directly derive a[δ]. In the right conjunct of the example of Fig. 8, as π is
reachable from ǫ following a path of the form (l+r)⋆, we derive π·l·p⊲π∨π·l⊲null
from the above S∀., . constraint. Clearly the left child of π is not null, so
π · l · p ⊲ π. However, π · l · p ⊲ ξ also holds. Thus, (R⊲≡) now applies and

16 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

ξ = π. This allows us to materialize field y → p → l in D〈ιh〉. as well as in
D〈ιh〉. The reduction allows the analysis to continue while retaining a high level
of precision (note that we needed to materialize that field in both conjuncts
to analyze the update precisely). Note that cases where node α would be the
left child in one conjunct and the right one in the other conjunct are ruled out.
Indeed, as soon as the parent nodes are identified as equal during the reduction
process, the constrain operator will deduce that its left and right children are
equal, which would violate the separation property. A reduction in the opposite
direction would need be performed for the analysis of an assignment to y→h→i.
More generally, sequences of accesses to p and h fields will generate cascades of
reductions. This example shows that the reduced product analysis decomposes
reasoning over p and h fields in both domains and organizes the exchange of
information to help materialize points-to predicates across the product.

6 Implementation

We have implemented the memory reduced product combinator into the Mem-
CAD analyzer (Memory Compositional Abstract Domain) as an ML functor tak-
ing two memory abstract domains as arguments and returning a new one and the
inductive definition pre-analysis described in Sect. 5.3. Reduction strategy can
be selected among those presented in Sect. 4.2 (on-read comes as default whereas
minimal and maximal can be activated as options). The analysis is fully auto-
matic and takes as input C code and inductive definitions such as those shown
in Sect. 2. It computes a finite disjunction of abstract states for each program
point. It was run on a set of over 30 micro-benchmarks, as well as medium-sized
ones such as the iterator described in Sect. 2. Fig 10 presents selected analysis
results (timings were measured on a 2.2 Ghz Intel Core i7 with 8 GB of RAM)
that highlight the impact of the reduced product and the reduction strategies.
In particular, multiple other list and trees algorithms gave similar results and are
not presented here. For each analysis, the table shows the number of LOCs, the
mode (analysis with no reduced product —no r.p.—, using a monolithic domain,
with a single inductive definition, or with a reduced product and minimal, on-
read or maximal reduction mode), analysis time in seconds, number of calls to
reduction operations in col. (a), number of path predicates computed by reduc-
tion rules (R⊲≡) and (RS∀) in col. (b) (comprising all steps to perform reduction
operations), number of node merges performed as part of reductions in col. (c),
number of reduction proving a disjunct has an empty concretization (hence, can
be pruned) in col. (d), average number of disjuncts per program point, and tim-
ing ratio compared with the analysis time with no reduction product. Reduction
may prove abstract elements have an empty concretization, for example, when
it infers that both α · f ⊲ β and α · ∅ ⊲ null hold, or when it discovers equalities
that would violate separation.

The comparison with monolithic analyses involving a single, more complex
inductive definition shows those are faster than analyses with a product domain,
which is not surprising, as the product analyses induces an overhead of duplicate

Reduced Product Combination of Abstract Domains for Shapes 17

Filename & Reduction Time Avg. Speed
Description LOCs mode (s) (a) (b) (c) (d) disjs down

structure: doubly linked list with shared record

insert_list.c 35 no r.p. 0.018 - - - - 1.33 1
on read 0.042 2 40 1 1 2.07 2.33
maximal 0.056 26 417 8 4 1.96 3.11

structure: tree with parent pointers and pointers to static record

read_tree.c 42 no r.p. 0.028 - - - - 1.43 1
(random traversal minimal 0.120 4 118 0 0 3.07 4.28

then read data field) on read 0.086 9 391 8 0 1.87 3.07
maximal 0.095 32 919 18 4 1.73 3.39

insert_tree.c 47 no r.p. 0.031 - - - - 1.56 1
(random traversal minimal Fails

then insert element) on read 0.080 9 379 8 0 1.86 2.58
maximal 0.090 43 1089 18 4 1.73 2.90

rotate_tree.c 47 no r.p. 0.031 - - - - 1.56 1
(random traversal on read 0.086 8 350 8 0 2.03 2.77

then rotate) maximal 0.098 44 1201 22 4 1.92 3.16
structure: tree with parent pointers and pointers to static record, and iterator

iter_00.c 171 no r.p. 0.278 - - - - 8.74 1
(random traversal) minimal Fails

on read 0.701 64 2578 30 28 10.22 2.52
on r & u 0.689 66 2635 28 30 9.68 2.47
maximal 1.807 854 19714 28 30 10.06 6.5

iter_01.c 181 no r.p. 0.353 - - - - 7.27 1
(random traversal) on read 0.907 70 2902 34 32 7.99 2.56

on r & u 0.871 80 3287 46 34 7.53 2.46
maximal 2.263 978 24865 41 34 7.81 6.41

Fig. 10. Implementation Results.

domain operations and reduction operations. However, as regards the analysis
with the “on-read” and “on r & u” strategies, the timing difference does not seem
so dramatic (between 2.33X and 3.07X) and interestingly tends to reduce on
larger examples). Besides, applying the product analysis only to the part of
the heap where the composite structure lies, using a separating product domain
combinator would cut that cost down further (though, is not part of the scope
of this work).

The key part of our empirical evaluation is to assess strategies. While an
overly aggressive strategy is likely to slow down the analysis by performing use-
less reductions, a too passive strategy may cause a loss in precision. This is
why, in some cases, the minimal reduction strategy does not allow the analy-
sis to succeed, as it tends to perform reduction too late, at a point where a
stronger constrain operator would be needed to fully exploit predicates brought
up by extract (this occurs for insert_tree.c, rotate_tree.c and both analyses
with the iterator structure). More eager strategies such as on-read and maximal
do not suffer from this issue. The on-read strategy analyzes all tests precisely.
Moreover, while the slow down of maximal over on-read is low for small pro-
grams, it tends to increase more than linearly in the analysis time and reach
6.5X on the larger examples (while the on-read strategy is around 2.5X slower),

18 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

which suggests it is not likely to scale. This suggests the on-read strategy is a
good balance.

Curiously, we also noticed that more aggressive strategies reduce the num-
ber of average disjuncts. Upon review, we discovered that this is due to some
disjuncts being pruned by reduction earlier in the analysis and often right after
unfolding points. Following this practical observation, we extended the on-read
strategy so as to also perform reduction right after unfolding. The results ob-
tained with this new strategy, called “on r & u” in the table, validate this hy-
pothesis, as it reduces numbers of disjuncts and analysis time compared to the
on-read strategy. It overall appears to be an efficient strategy.

7 Related works

Reduced product construction has been widely studied as a mathematical lattice
operator [8,11] as well as a way to combine abstract domains so as to improve
the precision of static analyses [8,3,9,13,4]. However, it is notoriously hard to
design a general notion of reduced product: first, optimal reduction is either
not computable or too costly to compute in general (so that all reduced product
implementations should instead try to achieve a compromise between the cost
of reduction and precision); second, exchanging information between domains
requires them to support reduction primitives using a common language that
may be hard to choose depending on the application domain. We believe this is
the reason why no general form of such construction has been set up for memory
abstractions thus far.

The most closely related work to ours is that of [15]. In that work, the
authors consider a hybrid data-structure which contains a list structure laid over
a tree structure. To abstract such memory states, the authors use non-separating
conjunctions over zones. Our construction presents some similarities to theirs:
we also use non-separating conjunction. Their technique and ours are quite
complementary. Whereas our product construction focuses on the situations
where precise path information must be transferred between components, theirs
looks at the case where the only needed information is that two structures share
the same nodes. In terms of an implementation strategy, their reduction relies on
an instrumentation of the program to analyze, using ghost statements, whereas
our implementation uses a semantic triggering of reduction, when one component
fails.

Some analyses inferring properties of memory states utilize non-separating
conjunctions in a local manner [18,14] in order to account for co-existing views
on contiguous blocks corresponding to values of union types, or in order to
handle casts of pointers to structures. Those analyses exploit conjunctions in a
very local way and are unable to propagate global shape properties across the
conjunctions.

Other authors have proposed to do a product of shape abstraction with a
numerical domain [6,12,17]. These works are very different in that they do not
combine two views of memory properties. Instead, they usually use numerical

Reduced Product Combination of Abstract Domains for Shapes 19

abstract values to characterize the contents of memory cells the structure of
which is accounted for in the shape abstraction: thus, those are usually asym-
metric constructions, using a form of a co-fibered domain [21], that is, where the
shape abstraction “controls” the memory abstraction. Other works have exam-
ined decomposing analyses of programs with numerical and memory properties
into a sequence of analyses [16]. Compared to the above works, this approach
does not allow information flow between analyses into both directions.

Last, we remark that the language of constraints used for the reduction
conveys reachability information, which are at the foundation of TVLA shape
analyses [20]. We found it interesting to note that such predicates are effective
at providing a low level view of memory properties, that is, a kind of assembly
language used between shape abstractions.

8 Conclusion

In this paper, we have proposed a reduced product combinator for memory ab-
stract domains, with a general interface, allowing a modular abstract domain
design. We have shown that this product can be used with existing shape ab-
stractions based on separation logic and inductive definitions. Moreover, we have
implemented the resulting framework inside the MemCAD analyzer and shown
the impact of reduction strategies on analysis results and efficiency.

A first direction for future work consists of integrating other memory abstrac-
tions into our framework, so as to benefit from the reduced product combinator
with expressive abstractions, such as, a domain based on three-valued logic [20].
A second direction for future work is to design and implement a combinator for
memory abstraction based on separating conjunction, which would enable one to
apply entirely different abstractions to cope with data structures stored in differ-
ent memory regions, while keeping the interactions between those abstractions
minimal. Together with our reduced product combinator, this combinator would
enable one to derive analyses such as that of [15] as instances of our framework,
among others, while retaining the advantages of a modular abstract domain.

References

1. L. Andersen. Program Analysis and Specialization for the C Programming Lan-

guage. PhD thesis, 1994.
2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies, and H. Yang.

Shape analysis for composite data structures. In CAV, pages 178–192, 2007.
3. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A static analyzer for large safety-critical software. In PLDI, pages
196–207, 2003.

4. B.-Y. E. Chang and R. Leino. Abstract interpretation with alien expressions and
heap structures. In VMCAI, pages 147–163, 2005.

5. B.-Y. E. Chang, X. Rival, and G. Necula. Shape analysis with structural invariant
checkers. In SAS, pages 384–401, 2007.

20 Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival

6. Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis. In
POPL, pages 247–260, 2008.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252, 1977.

8. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
POPL, pages 269–282, 1979.

9. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
Combination of abstractions in the astrée static analyzer. In ASIAN, pages 272–
300, 2006.

10. D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation
logic. In TACAS, pages 287–302, 2006.

11. R. Giacobazzi and I. Mastroeni. Domain compression for complete abstractions.
In VMCAI, pages 146–160, 2003.

12. S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for tracking
partition sizes. In POPL, pages 239–251, 2009.

13. S. Gulwani and A. Tiwari. Combining abstract interpreters. In PLDI, pages 376–
386, 2006.

14. V. Laviron, B.-Y. E. Chang, and X. Rival. Separating shape graphs. In ESOP,
pages 387–406, 2010.

15. O. Lee, H. Yang, and R. Petersen. Program analysis for overlaid data structures.
In CAV, pages 592–608, 2011.

16. S. Magill, J. Berdine, E. Clarke, and B. Cook. Arithmetic strengthening for shape
analysis. In SAS, volume 4634 of LNCS, pages 419–436. Springer, 2007.

17. B. McCloskey, T. Reps, and M. Sagiv. Statically inferring complex heap, array,
and numeric invariants. In SAS, pages 71–99, 2010.

18. A. Miné. Field-sensitive value analysis of embedded C programs with union types
and pointer arithmetics. In LCTES, pages 54–63, 2006.

19. J. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
pages 55–74, 2002.

20. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
In POPL, pages 105–118, 1999.

21. A. Venet. Abstract cofibered domains: Application to the alias analysis of untyped
programs. In SAS, pages 366–382, 1996.

