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Abstract
We present an approach and tool for general-purpose modeling of
Android for static analysis. Our approach is to explicate the reflective
bridge between the Android framework and an application to make
the framework source amenable to static analysis. Our DROIDEL
tool does this by automatically generating application-specific stubs
that summarize the reflective behavior for a particular app. The
result is a program with a single entry-point that can be processed
by any existing Java analysis platform (e.g., Soot, WALA, Chord).
We compared call graphs constructed using DROIDEL to call graphs
constructed using a state-of-the-art Android model and found that
DROIDEL captures more concrete behaviors.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords static analysis, framework modeling, soundness, reflec-
tion, Android

1. Introduction
Reflection is a notoriously thorny issue that most static analyses do
not handle soundly [11]. Thus frameworks like Android that make
heavy use of reflection pose problems for static analysis. Because the
Android framework is complex and full of reflection, static analyses
for Android typically choose to create models of the Android
framework rather than analyzing the framework code itself. Creating
these models is both tedious and error-prone, as it requires careful
study of the framework’s source code, documentation, and dynamic
behavior. However, carefully crafted models are extremely important
because an incomplete or incorrect model can compromise both the
soundness and the precision of an analysis.

Since carefully crafted framework models are so important,
we would hope that once a well-tested, authoritative framework
model for Android has been created, all static analyses for Android
would be able to re-use it. Unfortunately, to our knowledge, no
such general framework model exists. The primary reason for this
current state of affairs is that framework models tend to be client-
specific—they summarize only the semantics of the framework with
respect to a particular analysis client. This enables the framework
model designer to abstract away the complex behavior of the
framework code that is not relevant to the client of interest. For
example, the FLOWDROID taint analysis tool [2] models calls to
framework methods from application code via handwritten taint
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wrappers that summarize the framework’s behavior for the taint
analysis client. Although the creators of FLOWDROID have spent
an immense amount of effort understanding and modeling the
Android framework, their models cannot be readily reused by other
analyses for Android. To see the problem concretely, consider this
response on the Soot mailing list1 from a FLOWDROID developer
to a frustrated analysis designer who wishes to build a new analysis
client on top of FLOWDROID:

Question: “The call graph is missing edges. . . .”
Response: “Another idea would be to just live with the
incomplete call graph. . . . . We know that we don’t have
call edges for some call sites. . . . . You write that you do not
want to perform taint tracking. In that case, the taint wrappers
provided by FlowDroid will not be of much help.”

Clearly, the Android static analysis community would benefit
from a general model of the framework that is independent of
any particular client and can be used with any program analysis
platform. In this paper, we present an approach to fill this void and
an implementation of this approach in the DROIDEL tool.

Android applications (apps) hook into the framework by extend-
ing special framework classes such as Activity or Service and over-
riding known callback methods such as onCreate or onDestroy.
The framework executes an app by using reflection to look up the
application classes that extend these special types and to invoke the
appropriate callback methods in response to user interaction. In brief,
DROIDEL works by explicating this reflection. That is, our approach
to “the modeling problem” is to analyze the Android framework
code itself, but to de-obfuscate the library’s usage of reflection.
DROIDEL does this de-obfuscation automatically by replacing re-
flective method calls with automatically generated app-specific stubs
that invoke the appropriate app code.

The key observation underlying our approach is that most uses
of reflection are simply to make the Android framework generic for
all apps. DROIDEL takes advantage of this observation to create a
non-reflective, app-specific version of the Android framework for
each application it analyzes. The replacement of reflective calls and
the generation of stubs is performed entirely at the Java source code
level; the output of DROIDEL is a Java program with a single entry-
point that can be processed by any existing Java analysis platform
(e.g., Soot, WALA, Chord).

One of our contributions is the open-source DROIDEL implemen-
tation2 following the approach advocated in this paper. DROIDEL
is already being used by researchers from IBM Research, the Uni-
versity of Texas, the University of Maryland, and the University
of Colorado for a wide variety of analyses including taint analy-
sis, malware detection, permission analysis, and null dereference
checking.

1 https://mailman.cs.mcgill.ca/pipermail/soot-list/
2015-February/007745.html and 007747.html.
2 https://github.com/cuplv/droidel
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In the rest of this paper, we present an example showing how
surprisingly subtle soundness issues can arise in framework model-
ing (Section 2), explain in detail how DROIDEL explicates reflection
in the Android framework by generating stubs summarizing the
behavior of key reflective method calls (Section 3), and demonstrate
that call graphs constructed using DROIDEL-processed apps capture
more concrete behaviors than a state-of-the-art model (Section 4).

2. Overview: Modeling Versus Explicating
In this section, we show how framework models can have subtle
soundness problems. Even when models seem over-approximate for
the analysis of interest, failure to fully model the execution context
of application code can lead to surprising unsoundnesses.

Our approach in DROIDEL is to prevent soundness concerns
by avoiding modeling whenever possible. Instead, we focus on
explicating the parts of the Android framework that are polymorphic
with respect to apps. By instantiating this polymorphism for a
given app, we can eliminate difficult-to-analyze code and sources of
unsoundness, such as uses of reflection.

Background: Modeling the Android Framework Since Android
applications are event-driven, apps do not have a single main method
for a static analysis to use as an entry point. Instead, control flow
occurs primarily through callbacks. Applications create callbacks by
extending special framework classes (e.g., Activity and Service) that
expose known callback methods (e.g., onCreate and onDestroy).
Apps override these callback methods and then register the extended
class with the framework. Developers can register callback classes
either at run time via a programmatic API or in the application
manifest and application resources via special XML files that are
packaged with the application. For example, the LoginActivity class
in Figure 1a is application code that defines two callback methods
onCreate and onCancel (highlighted in purple).

At run time, callbacks registered by the application are invoked
by the framework both in response to user interaction and to signify
changes in the lifecycle of core components. As an example of the
first kind of callback invocation, when the user cancels the dialog d
from Figure 1a (e.g., if the user presses the hardware “Back” button),
the onCancel callback will be invoked. As an example of the second
kind of callback invocation, when an instance of the LoginActivity
class is launched by the Android operating system, its onCreate
method will be invoked.

The Android framework code that allocates application objects
and invokes callbacks is complex. It uses dynamic language features
such as reflection to support configuration via XML files. To achieve
reasonable precision and scalability in practice, nearly all Java static
analyses choose to handle reflection in an unsound way [11]. Though
compromising on reflection soundness often produces acceptable
results for ordinary Java programs, adopting this strategy to analyze
an Android app using framework code as entry points yields a
useless call graph in which no application methods are reachable.
This situation puts analysis developers in a bind: unsound reflection
handling is necessary to achieve precision and scalability, but it is
too unsound to understand the reflective bridge that connects the
Android framework with apps.

Most static analysis tools for Android address this issue by
abandoning analysis of the framework code altogether. Instead, tools
typically generate an application-specialized harness, or a single
“main” method that models the callback invocations performed by
the framework. Figure 1b is an example harness for exercising the
code in Figure 1a. The loginActivityHarness method models
the lifecycle of a LoginActivity instance, and the androidMain
method models the top level of the Android framework that manages
the lifecycle of all components. Most models described in the
literature (e.g., [2, 8, 12]) generate a harness similar to Figure 1b

class LoginActivity extends Activity {
AsyncTask mAuthTask = null;
@Override void onCreate() {

1 mAuthTask = new AsyncTask(...);
2 AlertDialog d = ProgressDialog.create(...);
3 OnCancelListener l =
4 new OnCancelListener() {
5 @Override void onCancel() {
6 mAuthTask.cancel();
7 }
8 };
9 d.setOnCancelListener(l);

}
}

(a) A code snippet with two callback methods onCreate and onCancel.

void loginActivityHarness() {
10 Activity a = new LoginActivity();
11 OnCancelListener l =

new LoginActivity().new OnCancel();
12 a.onCreate();
13 while (∗) {
14 if (∗) { l.onCancel(); }
15 . . . // other callbacks
16 }
17 a.onDestroy();

}

void androidMain() {
while (∗) {

if (∗) { loginActivityHarness(); }
. . . // other components

}
}

(b) A harness model for the app snippet in (a) with a subtle
soundness bug.

Figure 1. Modeling: an Android app with a harness model.

using a procedure like the following: (1) parse the application
manifest and resources to identify callback classes that will be
instantiated by the framework (e.g., LoginActivity), (2) scan the
application code to identify allocations of special callback classes
(e.g., OnCancelListener), and (3) for each callback class (both
framework-allocated and application-allocated), create a harness
that allocates an instance of the callback class and invokes each of
its known callback methods (e.g., loginActivityHarness).

Unsound Modeling Unfortunately, the harness model shown in
Figure 1b is unsound for surprisingly subtle reasons.

When a LoginActivity is created, the application code from
Figure 1a starts an asynchronous task to authenticate the user (line 1).
It then sets up a progress dialog d to keep the user informed about
the login process and a listener l to handle the case where the
user wishes to cancel the login process (lines 2–9). If the user
cancels the dialog, the l.onCancel() callback is invoked by the
framework, which in turn cancels the running authentication task
(line 7). Concretely, all of the code in this snippet is reachable and
each statement can execute without throwing an exception.

The harness shown in Figure 1b models the Android framework
by allocating instances of the callback-enabled types Activity and
OnCancelListener (lines 10–11), which correspond to LoginActivity
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LoginActivity.OnCancel-4

LoginActivity-10 AsyncTask-1

LoginActivity.OnCancel-11

LoginActivity-11 ∅
this$0

mAuthTask
this$0

mAuthTask

Figure 2. Points-to graph for the code snippet in Figure 1a using the
harness in Figure 1b as an entry point. Unsoundness in the harness
causes the points-to analysis to conclude that the mAuthTask field of
LoginActivity-11 always points to null, which suggests the dispatch
at line 7 of Figure 1a always raises a null pointer exception.

and LoginActivity.OnCancel (the anonymous inner class3). While
the allocation of the LoginActivity.OnCancel class looks a bit
odd, the harness needs an instance of the class in order to call its
onCancel callback. Many tools model anonymous callback classes
this way.

Because the anonymous inner class LoginActivity.OnCancel is
a non-static inner class, it can (according to Java semantics) only be
allocated alongside an instance of its parent class LoginActivity.
Notice that the statement at line 11 of the harness actually al-
locates two objects—a parent LoginActivity object and its in-
ner LoginActivity.OnCancel object. The remainder of the harness
(lines 12–17) models the Android lifecycle for Activity objects, or
specifically for LoginActivity objects (beginning with onCreate
and ending with onDestroy). The uses of non-deterministic choice
(∗) over-approximate the event loop of the framework and model
the possibility that user interactions (e.g., canceling the dialog) may
or may not occur.

One subtle soundness issue in this framework model is that the
harness allocates its own instance of the LoginActivity.OnCancel
class rather than using the instance allocated in the application code
(line 4 in Figure 1a). The harness only calls onCancel on its own
instance (allocated at line 11 in Figure 1b); the onCancel callback
is never called on the application instance (allocated at line 10). Cor-
respondingly, the onCreate callback of the LoginActivity instance
that is the parent of the harness instance of LoginActivity.OnCancel
does not get called. Thus, a sound static analysis of this code could
unsoundly conclude that mAuthTask is always null and thus the
method call to mAuthTask.cancel() at line 7 in Figure 1a never
executes.

This subtle soundness mistake in modeling can have a sig-
nificant effect on analysis results. Consider running a 1-object-
sensitive Andersen-style points-to analysis using an allocation-
site based heap abstraction on the program in Figure 1a using
the harness in Figure 1b as an entry point. We show the re-
sult of this analysis in Figure 2. The nodes in the graph are
allocation sites numbered with the line number of the alloca-
tion. For example, LoginActivity.OnCancel-4 is a summary of
the instances of the anonymous class LoginActivity.OnCancel
allocated at line 4. A directed, labeled edge between a source
node and a sink node means that at run time, an object in the
concretization of the source node may point to an object in the
concretization of the sink node through the field indicated by
the label. Now, we see clearly in the points-to graph that the
harness-allocated instance of LoginActivity.OnCancel is sum-
marized by LoginActivity.OnCancel-11, and the mAuthTask of
LoginActivity.OnCancel-11 can only ever hold the value null. We
emphasize that this occurs even though the points-to analysis itself
is sound—the problem is that the harness serving as the framework
model for Android is unsound.

3 The Java compiler typically give anonymous inner classes names like
LoginActivity$1, but here we use a different naming convention for clarity.

The consequence of this modeling bug is that the effects of the
call to the cancel method and its callees are (unsoundly) not taken
into account by the analysis. This unsoundness can propagate. For
example, a taint analysis tool like FLOWDROID wishes to soundly
report all leaks of sensitive information to public sinks (e.g., to
report all leaks of the user’s contacts to the Internet), but if such a
leak occurs in the cancel method or its callees, FLOWDROID will
unsoundly miss the leak.

The Problem with Harness Models Our point in presenting this
example is not that this specific modeling issue is particularly trou-
blesome; it is a subtle problem, but can easily be fixed. Alternatively,
this unsound model is acceptable as-is when using a less precise
type-based points-to analysis like RTA [4] or VTA [17] that “hides”
the unsoundness of the model—just like the control-flow constructs
while and if in the harness are not needed if the static analysis is
flow-insensitive. However, these coarser abstractions may not be pre-
cise enough to meet the needs of client analyses, and camouflaging
the unsoundness of the model with a coarser abstraction addresses
the symptom of the soundness issue rather than the cause.

The true issue is that the harness-based approach to modeling
Android is problematic in general. Using a harness abstracts away
intricate details of the framework that are difficult to recreate and
may (unexpectedly) be important for soundness. We speak from
personal experience—an early version of DROIDEL used a harness-
based modeling approach that had many problems similar to the one
described here. We discovered and fixed this particular unsoundness,
only to discover more and more unsoundnesses also caused by
abstracting away too many details about the execution context of
the Android framework. DROIDEL’s current approach of explicating
reflection and analyzing the framework code directly (as described
in Section 3) is motivated by this bad experience with “unsoundness
whack-a-mole.”

3. Design and Implementation of DROIDEL
We want DROIDEL to be a tool that can automatically transform an
Android application into a form that can be analyzed by any Java
program analysis tool. In this section, we explain how we designed
and implemented DROIDEL to achieve this goal. Section 3.1 focuses
on how an analysis designer can use DROIDEL, while Section 3.2
explains our implementation in detail for the benefit of analysis
designers interested in adapting and extending our approach.

3.1 Designing DROIDEL for General Usability
In designing DROIDEL, we focused on the following two principles.

Model the framework as little as possible. Most existing appro-
aches to analyzing Android applications explicitly seek to avoid
analyzing the Android framework, but our approach is exactly
the opposite. Each bit of framework code that is not analyzed
must be carefully modeled to avoid introducing unsoundness
(as we argued in Section 2). Instead of replacing the framework
code with a large model, we choose to augment it with small
models that minimally explicate the reflection and native code
that the framework uses to interact with applications.

Be as standalone as possible. Modeling Android is hard work. We
want others to benefit from our modeling efforts. In practical
terms, this means that our model must be usable by any client
analysis or program analysis framework in order to be widely
adopted. To avoid being client-specific, we avoid abstracting
away any Android framework code so that we do not eliminate
any behaviors of potential importance. To avoid being analysis
framework-specific, we generate all of our stubs and models at
the Java source code level so they can be understood by any Java
program analysis tool.
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public interface DroidelStubs {
// Reflective allocations of app objects
Application getApplication(String cls);
Activity getActivity(String cls);
Service getService(String cls);
BroadcastReceiver getBroadcastReceiver(String cls);
ContentProvider getContentProvider(String cls);
Fragment getFragment(String cname);
View inflateViewById(int id, Context ctx);

// Reflective method invocations
void callXMLRegisteredCB(Context ctx, View v);

}

(a) DROIDEL generates app-specialized stubs that implement this interface.

class AppStubs implements DroidelStubs {
Activity getActivity(String cls) {

if (cls == "ActivityA") {
return new ActivityA();

} else if (cls == "ActivityB") {
return new ActivityB();

} else { return new Activity(); }
}

View inflateViewById(int id, Context ctx) {
switch (id) {

case R.id.passwordView:
return new TextView(ctx);

case R.id.tweetView:
return new TextView(ctx);

default: return null;
}

}

void callXMLRegisteredCB(Context ctx, View v) {
if (ctx instanceof ActivityA) {
((ActivityA) ctx).myOnClick(v);

} else if (ctx instanceof ActivityB) {
((ActivityB) ctx).myOnClick(v);

}
}

}

(b) A partial implementation of DroidelStubs from (a) for an app with
ActivityA and ActivityB, two TextViews, and an XML configuration-
registered callback myOnClick.

Figure 3. We manually replace reflective calls in the Android
framework with calls to DroidelStubs methods.

Note that our explicating approach is entirely compatible with
additional modeling such as client-specific modeling (e.g., for
increasing precision or improving the scalability of the analysis).
We believe that starting from the framework source code and
incrementally modeling key portions of the code is bound to lead to
more trustworthy analysis results than beginning with a model that
has no direct relationship to the framework source.

In building DROIDEL, we began by studying the source code
for the Android framework and identifying uses of reflection that
may allocate application objects or call methods on application
objects. We then manually replaced each such use of reflection in
the Android framework with a call to an appropriate method from
the DroidelStubs interface shown in Figure 3a. This interface acts
as a bridge between application and framework code—it allows
the framework to obtain pointers to application-space objects. The

DroidelStubs interface also centralizes and serves to document
the instances of framework reflection that it explicates.

After replacing uses of reflection with calls to method stubs
from DroidelStubs, we made one final change to the Android
framework code: we changed ActivityThread.main, the “main”
method that the Android framework uses to run an application, to
take an implementation of the DroidelStubs interface as input.

The result is a slightly modified version of the Android frame-
work that calls stubs from DroidelStubs rather than using re-
flection in several key places. This modified framework code can
be compiled once and then used to analyze any application. The
application-specific part of DROIDEL is generating an implementa-
tion of DroidelStubs, which we explain further in Section 3.2.

As the Android framework changes, future uses of framework
reflection can easily be handled by adding new methods to this
interface, updating the framework with calls to the new methods,
and updating the application-specific part of DROIDEL to generate
implementations of these new methods on a per-app basis.

Analyzing an App with DROIDEL To enable whole-program
analysis, DROIDEL creates a special androidMain method whose
body allocates an instance of the auto-generated DroidelStubs
implementation and calls the ActivityThread.main method with
this object as its argument. An Android program analysis that wishes
to use a DROIDEL-processed program need only import: (a) the
application classes, (b) the DROIDEL-generated stub classes, and
(c) the modified Android framework classes. The androidMain
method can be used as a single entry point for whole-program
analysis.

3.2 Implementation
There are two parts to DROIDEL: (1) a one-time manual modification
of the Android framework sources to replace uses of reflection with
calls to the appropriate methods of the DroidelStubs interface
and (2) a per-app code generation module to automatically create an
application-specific implementation of DroidelStubs.

Manually Explicating Reflection in the Android Framework To
see a concrete example of replacing uses of reflection with calls
to stub methods in DroidelStubs, consider the following snippet
drawn from the android.app.Instrumentation class:

// Replace the use of reflection (a call to newInstance) with
// a call to the Droidel stub getActivity.
Activity a = (Activity) clazz.newInstance();
Activity a = droidelStubs.getActivity(clazz.getName());

We manually identified that the call to clazz.newInstance()
might create an Activity object from the application, so we replaced
this use of reflection with a call to droidelStubs.getActivity,
a method of the DroidelStubs interface. For a method like
getActivity, the DROIDEL implementation will generate allo-
cations for each subclass of Activity defined in the application.

Application-Specific Stub Generation When DROIDEL runs on
an app, it synthesizes an application-specific implementation of
each of the stub methods of the DroidelStubs interface. To
generate the getter methods for the core Android components
Application, Activity, Service, BroadcastReceiver, ContentPro-
vider, and Fragment, DROIDEL parses the application manifest
AndroidManifest.xml for the app to determine which compo-
nents have been declared by the developer and then builds the class
hierarchy for the app and ensures that it can find each component.

To give an example of what an app-specific implementation of
DroidelStubs would look like, we continue the discussion of the
stub method getActivity from above. In Figure 3b, we show an
implementation of DroidelStubs for an app with two subclasses
of Activity (named ActivityA and ActivityB). The generated
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implementation of getActivity simply dispatches based on the
cname parameter. The documentation for newInstance states that
this reflective call invokes the default (zero-argument) construc-
tor for the given Class, so our stub methods allocate each type
by invoking its zero-argument constructor. Generating the getter
methods for the other core Android components is similar, though
there is some special handling of Fragments because their usage
has changed slightly as the Android framework has evolved.

Generating the inflateViewById stub is slightly different
because Views are components of the Android layout instead
of core Android components, so they are typically declared in
resource files (e.g., res/layout/filename.xml) rather than in
the application manifest. Additionally, View objects have asso-
ciated identifiers that the app developer can use to distinguish
between different layout components at run time. Understand-
ing the association between View objects and their identifiers
is crucial for a static analysis because View objects are fre-
quently retrieved using these identifiers with methods such as
findViewById. For example, the developer might have one
TextView object with identifier R.id.passwordView and an-
other TextView object with with identifier R.id.tweetView. It
is important for the static analysis client to understand that call-
ing findViewById(R.id.passwordView) will return a different
TextView than calling findViewById(R.id.tweetView), or else
the state of the two View objects may be conflated.

Thus, DROIDEL parses all of the layout resource files to identify
which View objects the app may use and to associate instances
with their identifiers. It then generates stubs that model the reflective
instantiation of View objects from the layout XML configuration file
(called layout inflation in Android). For the simple two-TextView
layout objects described above, DROIDEL would generated the stub
implementation for inflateViewById shown in Figure 3b.

The functionality to generate these application-specific stubs is
the core of DROIDEL. These stubs explicate Android framework’s
use of reflection to allocate application objects specified in XML
configuration files. However, there is another tricky use of reflection
in the Android framework. In Android apps, the developer can
register callbacks either in the application code itself or (for certain
callbacks) in the layout XML configuration file for the application.
The first kind of registration is handled easily because its behavior
is apparent in the framework code (i.e., does not use reflection), but
the second kind of registration requires special treatment.

To give an example of the XML registration construct, suppose
the application developer uses the layout XML configuration file to
register a callback on a Button using the following snippet:

<Button android:onClick="myOnClick" ... />

The semantics of this XML snippet are that when the layout
hierarchy containing this Button is attached to an Android Context
object (e.g., via Activity.setContentView), the myOnClick
method of that Activity will be registered as a callback to be invoked
when the user clicks the Button. The lookup of the myOnClick
method for a particular Context object is performed reflectively
and thus must be explicated to be understood by the static analysis
client. DROIDEL deals with this use of reflection by parsing the
layout XML configuration file to identify XML-registered callbacks.
It then generates an implementation of the callXMLRegisteredCB
stub method that invokes each method of a Context subclass whose
name matches the method name in the layout XML.

Let us assume that the two Activity classes from our running
example, ActivityA and ActivityB, each have an myOnClick
method with the proper signature for overriding the interface method
OnClickListener.onClick. The callXMLRegisteredCB stub
shown in Figure 3b corresponds to the implementation that
DROIDEL would generate for this app. Since the layout hierar-

chy that registers the myOnClick method in the layout XML can be
used in any Context object at run time, this way of generating stubs
makes sure that every method matching myOnClick gets called.

Limitations There are many uses of reflection in the complex
Android framework that DROIDEL does not (yet) explicate (for ex-
ample, reflective allocation of Preferences objects). In addition,
DROIDEL does not generate stubs to summarize the behavior of
native methods in Android. Both of these issues are not fundamental
problems with our approach, but limitations of the current imple-
mentation that we plan to address in the future.

Another issue is that we currently need to perform the manual
explication of reflection in the Android framework separately for
each version of the Android framework. We believe that this process
can be automated in the future, as the explication that needs to
be performed is almost identical for each version of framework
we have considered. We note that the state of affairs is worse for
harness-based approaches since the semantics of each version of the
framework must be manually scrutinized in order to ensure that the
generated harness over-approximates its behaviors.

4. Empirical Evaluation
We have explained the need for a general and versatile Android
framework model and described how we developed DROIDEL to
attempt to fill this void. In this section, we present empirical evidence
to support the following claims:

1. DROIDEL represents a viable approach to modeling the Android
framework that captures more concrete behavior than current
models.
We evaluate this claim with respect to sound call graph con-
struction. A sound call graph should (at the minimum) over-
approximate the set of concretely-reachable methods. But as
discussed in Section 2, framework modeling can easily lead to
subtle soundness issues.

2. Incorporating the Android framework source as advocated by
DROIDEL is a tractable option for baseline static analyses.
We evaluate this claim by considering the feasibility of call graph
construction (which includes points-to analysis) using WALA, a
commonly-used Java static analysis framework.

Experimental Setup On a set of open source Android applica-
tions, we constructed call graphs using FLOWDROID and DROIDEL
and compared the missed concretely reachable application meth-
ods (Table 1). FLOWDROID is a state-of-the-art tool and Android
framework model that was certified by the PLDI 2014 artifact evalu-
ation committee, so it represents a stringent target for comparison.
FLOWDROID does not aim to be a general purpose model—its
harness generation aims primarily to improve the precision of flow-
sensitive taint analysis. However, many developers are building
analyses on top of the FLOWDROID model (cf. the Soot mailing list
issue in Section 1).

Our experimental process had three steps: (1) first, we instru-
mented each app and manually exercised it for five minutes; (2) then,
we constructed a call graph for each app using both FLOWDROID
and DROIDEL; and (3) finally, we compare the number of con-
cretely reachable application methods present in each call graph.
We compared only the set of application methods reached to avoid
unfairly penalizing FLOWDROID for modeling the Android frame-
work rather than analyzing the actual framework code (as DROIDEL
does).

To determine a set of concretely reachable application methods,
we instrumented each app using ELLA4 and manually exercised the

4 https://github.com/saswatanand/ella
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Table 1. Percent missed methods as a metric for determining how much app behavior is unsoundly missed. For dynamic exploration, we
give the number of application methods (Total) and application methods visited (Visited), as well as the percentage of application methods
manually executed (% Visited). For FLOWDROID and DROIDEL reachable methods, we show the number of visited methods present in the
respective statically-constructed call graphs (Reachable) and the percentage of concrete methods that were missed (% Missed). The bottom
row (Summary) contains the sum of all methods as well as the geometric means of the percent visited methods and percent missed methods.

Benchmark Dynamic Exploration of App Methods Reachable methods (FLOWDROID) Reachable methods (DROIDEL)

Total Visited % Visited Reachable % Missed Reachable % Missed

drupaleditor 325 90 28 78 13 88 2
spycamera 254 156 61 40 74 151 3
npr 341 96 28 76 21 90 6
duckduckgo 935 520 56 352 32 449 14
textsecure 4459 1364 31 925 32 1141 16
wordpress 5796 2042 35 1362 33 1961 4
k9 5357 1905 36 1267 33 1773 7

Summary 17467 6173 38 4120 30 5653 6

app. We chose to manually exercise the apps under test since many
of them require user logins, API keys, and other features that present
problems for automated exploration tools (e.g. DYNODROID [13],
A3E [3], GUITAR [1]).

We exercised each instrumented app on a Nexus 4 phone running
Android version 4.4.4 (KitKat) for five minutes, a time we found
sufficient to explore the core features of the application and execute
many of its methods. On average, we visited 38% of the total app
methods instrumented by ELLA (see Table 1). We felt that this was
reasonable coverage given that many apps have complex features
that are difficult to exercise and may also contain unreachable
methods.

Next, we ran FLOWDROID and DROIDEL on each app un-
der test using the same version of Android. We used the final
result of FLOWDROID’s incremental call graph construction us-
ing the default options configured by FLOWDROID, except with
the NoCodeElimination flag set to true to avoid any pruning
of the call graph. We used WALA to construct a call graph with
DROIDEL’s androidMain as an entry point (see Section 3) using
the most precise call graph construction algorithm built into WALA
(ZeroOneContainer-CFA).

Claim: The DROIDEL Approach is Effective for Sound Android
Modeling We compared the set of application methods visited
during dynamic exploration with the set of reported reachable by
the two static analyses (Table 1). On the seven apps we tested,
FLOWDROID missed an average of 30% of the dynamically visited
methods, whereas DROIDEL missed only 6%. While DROIDEL still
missed some dynamically visited app methods, it missed nearly
25% fewer than FLOWDROID and less than 10% overall. This
provides supporting evidence for our claim that DROIDEL is a viable
approach to sound modeling the Android framework.

Claim: Analyzing the Android Framework is Tractable A fre-
quently cited reason for modeling the Android framework rather than
analyzing the source is the size of the framework source code. Since
DROIDEL’s philosophy is to avoid modeling by analyzing the frame-
work source code directly, one might suspect that constructing a call
graph using DROIDEL would be intractable. Table 2 shows that even
for fairly large applications (up to 55K LOC), the call graph con-
struction in WALA takes less than five minutes. Though DROIDEL
takes longer to construct a call graph than FLOWDROID in almost
every case, the reason why is clear: DROIDEL must analyze the 1M+
LOC of the Android framework, whereas FLOWDROID does not.
The time taken by DROIDEL is still reasonable and (we feel) a fair
price to pay for enhanced soundness.

Table 2. The size of each benchmark (KLOC), the time taken
to run DROIDEL (Stub), to construct the call graph using
DROIDEL/WALA (Graph), and to construct the call graph using
FLOWDROID. All experiments were run on a MacBook Pro with a
2.6 GHz Intel Core i5 processor and 16 GB of memory.

Benchmark KLOC DROIDEL FLOWDROID

Stub (s) Graph (s) Graph (s)

drupaleditor 3 21 112 43
spycamera 3 19 89 15
npr 5 22 206 19
duckduckgo 10 28 121 48
textsecure 38 48 121 296
wordpress 47 35 220 113
k9 55 35 276 87

Threats to Validity It is well-understood that using a less precise
call graph construction algorithm can yield a call graph containing
more reachable methods. To try to avoid this effect, we use pre-
cise off-the-shelf construction algorithms. For DROIDEL, we use
ZeroOneContainer-CFA, which (as stated above) is the most precise
algorithm built into WALA. For FLOWDROID, we use the default
call graph configuration as configured by the FLOWDROID taint-
analysis tool (except for setting NoCodeElimination as discussed
previously).

We note that both FLOWDROID and DROIDEL unsoundly miss
concretely reachable methods in the evaluation. A fundamental
problem with unsoundness is that it is difficult to diagnose why a
model is unsound—is it because it models some feature incorrectly,
or is it because it fails to model some feature altogether? In ongoing
work, we are developing general techniques for automatically
identifying unsoundnesses in framework models and diagnosing
the root cause. In the absence of such techniques, our strategy for
ensuring soundness so far has been to use the framework as much
as possible and to model as little as possible in order to minimize
the surface area for modeling mistakes.

5. Related Work
Modeling the Android Framework for Static Analysis Previous
work has developed numerous techniques for modeling various
features of Android. SCANDROID [8] and FLOWDROID [2] were
the first static analysis tools to consider modeling the event-driven
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lifecycle of the core components in Android. DROIDSAFE [9]
attempts to analyze some of the framework code while replacing
other parts with accurate analysis stubs that summarize framework
behavior with respect to tainting and points-to analysis. These
stubs are correct for points-to and taint analysis, but abstract away
other behaviors of the framework. The GATOR tool [15, 18] of
Yang et al. and the SMARTDROID [19] tool focus on precisely
modeling the control-flow not only between lifecycle callbacks, but
also between callbacks registered to GUI components. COMDROID
[6], EPICC [14], and APPOSCOPY [7] specialize in modeling the
Intent mechanism that Android uses to implement inter-component-
communication between core components of a single app and (in
some cases) between core components of different apps on the same
device.

Though not all of these approaches explicitly reify a harness mod-
eling the application callbacks invoked by the Android framework,
they are all (to the best of our understanding) harness-based in the
sense that they model the invocation behavior of the framework by
considering a hard-coded set of callback methods to be entry points
for analysis. By contrast, DROIDEL works by explicating reflection
in the framework and then analyzing the framework code to allow
the analysis itself to determine what callbacks may be invoked.

Handling Java Reflection As mentioned previously, reflection is
a challenging feature for static analyses to handle soundly both in
Java and in other languages [11]. Several approaches to handling
Java reflection more soundly have been proposed. Tamiflex [5] uses
dynamic analysis to observe the targets of reflective method calls
at run time, then uses this information to generate reflective sum-
maries that are sound with respect to the observed concrete behavior.
The solution offered by Tamiflex is much more general than our
Android-specific reflection handling, but the instrumentation Tami-
flex performs does not work with Android applications.

Recent work by Li et al. [10] and Smaragdakis et al. [16] present
promising new approaches to fully-static resolution of reflective calls
in Java. Both techniques leverage meaningful operations performed
on the return value of reflective calls (such as downcasts) to provide a
more sound handling of reflection without compromising scalability.

6. Conclusion
We have presented an approach for modeling the Android framework
that explicates the reflective bridge between applications and the
framework. Built using this philosophy, DROIDEL attempts to avoid
unsoundnesses and client-specific design choices by avoiding direct
modeling in favor of analyzing the framework source code. We
have found DROIDEL to be a useful tool in our own research, and
we hope that DROIDEL can evolve as a community-driven building
block for many other Android static analyses going forward.
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