
0

Compositional Relational Abstraction for Nonlinear Hybrid
Systems

XIN CHEN, University of Colorado Boulder

SERGIO MOVER, University of Colorado Boulder

SRIRAM SANKARANARAYANAN, University of Colorado Boulder

We propose techniques to construct abstractions for nonlinear dynamics in terms of relations expressed in

linear arithmetic. Such relations are useful for translating the closed loop veri�cation problem of control

software with continuous-time, nonlinear plant models into discrete and linear models that can be handled

by e�cient software veri�cation approaches for discrete-time systems. We construct relations using Taylor

model based �owpipe construction and the systematic composition of relational abstractions for smaller

components. We focus on developing e�cient schemes for the special case of composing abstractions for

linear and nonlinear components. We implement our ideas using a relational abstraction system, using the

resulting abstraction inside the veri�cation tool NuXMV, which implements numerous SAT/SMT solver-based

veri�cation techniques for discrete systems. Finally, we evaluate the application of relational abstractions for

verifying properties of time triggered controllers, comparing with the Flow* tool. We conclude that relational

abstractions are a promising approach towards nonlinear hybrid system veri�cation, capable of proving

properties that are beyond the reach of tools such as Flow*. At the same time, we highlight the need for

improvements to existing linear arithmetic SAT/SMT solvers to better support reasoning with large relational

abstractions.

Additional Key Words and Phrases: Hybrid systems, relational abstraction, nonlinear systems, SMT, bounded

model checking

ACM Reference format:
Xin Chen, Sergio Mover, and Sriram Sankaranarayanan. 2017. Compositional Relational Abstraction for

Nonlinear Hybrid Systems. ACM Trans. Embedd. Comput. Syst. 0, 0, Article 0 (2017), 19 pages.

DOI: 0000001.0000001

1 INTRODUCTION
A relational abstraction of a plant model uses a relation T (®x(t), ®x(0), ®u, t) to capture the states

reached at time t , starting from initial state ®x(0) with control input ®u. Relational abstractions have

already been studied for linear systems [35, 42, 47]. They have allowed the e�cient use of SAT/SMT

solver-based veri�cation techniques such as bounded model checking (BMC) and IC3 [5, 8] in the

context of linear hybrid systems. However, computing relational abstractions for nonlinear systems

remains an open challenge, thus far.

The approach presented in this paper builds on the use of Taylor model-based integration of

nonlinear systems [6, 7, 12, 36]. A Taylor model approximates the trajectory of a nonlinear system

This article was presented in the International Conference on Embedded Software 2017 and appears as part of the ESWEEK-

TECS special issue.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the

full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1539-9087/2017/0-ART0 $15.00

DOI: 0000001.0000001

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:2 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

using a polynomial plus an interval to represent the uncertainty. As such, Taylor models form a

good basis for constructing relations between current and next states of a system. However, to

control the size of the uncertainty, we require the overall state and input space to be subdivided into

numerous cells, computing a Taylor model for each cell. This allows us to obtain a relation between

the current state and a reachable state at a future time instant. However, this also involves a tradeo�

between the precision of the abstraction vs the cost of computing and using the abstraction.

In this paper, we explore ideas to enable the e�cient computation of relational abstractions for

nonlinear systems and their use in verifying properties of closed loop control systems. The main

contributions of this paper are as follows:

(a) We present an adaptive subdivision scheme to control the uncertainty intervals in our result.

This allows the user to specify an “error tolerance” up front. Smaller tolerances will result in

more subdivisions, naturally. At the same time, an adaptive subdivision can �nd larger cells

where the behavior of the system is easier to approximate by a lower degree polynomial with

small error, while using smaller cell sizes for regions where the system’s behavior is more

complex.

(b) Next, we present a compositional approach that builds a relation for a large plant model by

analyzing how the plant model is put together from subsystems. Often, systems are provided to

us as monolithic ODEs without specifying the components. To facilitate this, a dependency graph

is computed from the plant ODE to automatically decompose a given ODE as a composition of

“modules”. The compositional approach is particularly e�ective when many of the components

are linear.

(c) Finally, our approach is evaluated over a set of benchmark plant and controller models, and

compared against the Flow* tool for verifying nonlinear hybrid systems through �owpipe

computation [13].

The evaluation shows that the optimizations proposed in this paper can drastically reduce the

computation time and the size of the resulting abstraction. Further, these relations when used

inside the NuXMV tool yields fast proofs of some key properties using the IC3 algorithm and

counterexamples using the BMC algorithm [10]. However, we also observe limitations arising

primarily due to the tradeo� between the precision of the relational abstraction and its size. An

imprecise abstraction is easier to analyze but yields more false positives, when compared to a more

precise analysis.

1.1 Motivating Example
Figure 1 shows an example of a controller for the speed and heading of a vehicle along a �xed road.

The state of the vehicle is speci�ed by 4 variables: (x ,y) : position in meters, v : velocity in m/s, θ :

heading angle in radians. It has two control inputs θref the reference heading in radians, and u, the

throttle input in m/s
2
. The continuous time dynamics are given by:

Ûx = v cos(θ) Ûy = v sin(θ)
Ûθ = −3(θ − θref) + dθ (t) Ûv = −dv (t)v

2 + u + du (t)
(1)

The time varying disturbances that a�ect the vehicle include dv (t) ∈ [0.009, 0.01]m
−1

, du (t) ∈
[−0.45, 0.45]m/s2, dθ (t) ∈ [−0.1, 0.1]rad/s.

Our goal is to control the vehicle along the desired trajectory (see Figure 1) at a desired speed

v∗ = 20 m/s. We consider a speed control and an independent heading control. Both controllers

run at a period δ = 0.1 seconds (10 Hz frequency). Note that the plant state variables (x ,y,v,θ)
sensed by the controllers are subject to sensor noise and estimation errors η. We also assume that

the computation time for control inputs is negligible compared to δ .

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:3

0km 0.5km 1km 1.5km 2km 2.5km

π
4

0

−π
4

π
4

π
6

Vehicle

Plant

Speed Ctrl.

Heading Ctrl.

©­­­«
x
y
v
θ

ª®®®¬

θr ef

u

Fig. 1. Motivating Example: Automatic Navigation System for following a planned path.

Speed Control: The speed control implements a proportional control with saturation, and is

computed as u = min(−U ,max(U ,−K(v −v∗))), wherein U = 5, K = 0.1 and v∗ = 20.

Heading Control: The heading control operates in 5 modes depending on the value of x , wherein

mode i operates in the range 500(i − 1) ≤ x < 500i meters and attempts to set the target heading to

θ ∗i , the desired heading for mode i . However, to avoid a dangerous skid, the reference heading is

changed by at most ±δmin at each step. Here δmin = 0.1 radians.

θr ef =


θ + δmin θ < θi − ϵ
θ − δmin θ > θi + ϵ

θ θ ∈ θi ± ϵ

The value of ϵ is set to 0.1. The heading control transitions from mode i to i+1whenever x(jδ) ≥ 500i
at the jth sampling step.

Relational Modeling: A relational model of the plant is a relation of the form R(®x(δ), ®x(0), ®u), that

models all the states ®x(δ) reachable over a single time period starting from an initial plant state ®x(0)
and control input ®u held constant over the time period [0,δ]. For instance, whenever v(0) ∈ [0, 10],
the reachable states at time δ = 0.1 satisfy the following relation:

x(0.1) ∈ x(0) − 4.983 × 10−3u + 9.95 × 10−2v(0) + [−11.116, 8.972]
y(0.1) ∈ y(0) + 0.0716θr ef + 0.452θ (0) + [−12.207, 12.207]
v(0.1) ∈ 0.0709 + 0.0995u + 0.99v + [−0.0445, 0.0191]
θ (0.1) ∈ 0.259θ (0) + 0.0741θ + [−0.0866, 0.0866]

(2)

Note that the relation is expressed as a formula in linear real arithmetic although the original

ODE (1) is nonlinear. Likewise, by partitioning the full range v ∈ [0, 50] and θ ∈ [−π ,π], into

smaller sub ranges, we obtain our relational model as a disjunction of relations of the form shown

in (2).

A relational model abstracts the plant as a discrete-time transition system. Furthermore, as

long as the relations involved are expressed in linear arithmetic, tools that use e�cient linear

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:4 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

Plant

Û®x = f (®x , ®u, ®d)

Control

®u ′ := Ctrl(®x + η)
+

®d(t)

®u(t)
®x

η(t)

Clk

Fig. 2. Schematic block diagram of the closed loop plant and control model with disturbances.

arithmetic SMT solvers can be directly applied to tackle veri�cation problems for nonlinear hybrid

systems [16, 20, 23]. However, this process involves a tradeo� between obtaining a more precise

relation that may involve a subdivision of the state space versus a more coarser relation that can

lead to false counterexamples. In Section 5, we demonstrate how properties can be veri�ed for

these controllers using standard constraint-based veri�cation techniques such as bounded model

checking and IC3 [5, 8, 17].

2 PRELIMINARIES
We present preliminary details that will de�ne the model of computation used for closed loop

systems, formally de�ne relational abstractions, summarize the various classes of abstractions for

linear systems and �nally, introduce �owpipe construction technique for nonlinear systems using

Taylor models.

We call the set of reals between two rationals a ≤ b, an interval, and denote it by [a,b]. A vector

of intervals has the form [®a, ®b], wherein ®a ≤ ®b. The width of an interval width([®a, ®b]) is de�ned as

maxi (®bi − ®ai).

2.1 Time Triggered Models
We will work with time triggered models, as shown in Figure 2, that compose a continuous time

plant P with a discrete controller that samples the plant state periodically, updating a control input

®u, that is held constant over a time period.

The plant P is de�ned by a system of Ordinary Di�erential Equations (ODEs) over state variables

®x , inputs ®u and (possibly time-varying) disturbances
®d(t): Û®x = f (®x , ®u, ®d) , ®x ∈ X, ®u ∈ U, ®d ∈ D,

whereinX denotes the state-space,U denotes the control input space andD denotes the disturbance

input space. We will assume that f is C∞ (i.e, continuous and di�erentiable to any order) for

simplicity. Throughout this paper, we will assume that X,U and D are compact, i.e., closed and

bounded. This is often reasonable since physical quantities involved in many plant models naturally

range over a possibly large but compact set.

Given an initial condition ®x(0), input signal ®u(t) and a disturbance signal
®d(t), the solution φf

exists over some time horizon ∆ > 0, such that for any t ∈ [0,∆], ®x(t) : φf (t , ®x(0), ®u(·), ®d(·)).
The controller operates periodically at times t = 0,δ , 2δ , . . . , computes a function Ctrl, sensing

the plant state with an associated sensing/estimation noise η(t). At each time step, it computes a

function ®u = Ctrl(®x + η), outputting the resulting control to the plant, where it is held constant

for a time period.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:5

2.2 Relational Abstraction
In general, a relational abstractionT (®x(t), ®x(0), ®u, t) of a plant model P is a relationT involving the

initial state ®x(0), (constant) control input ®u and the state reachable ®x(t) at some time t ≥ 0.

De�nition 2.1 (Relational Abstraction). A relation T (®x(t), ®x(0), ®u, t) is an abstraction of a plant

model P de�ned by an ODE
Û®x = f (®x , ®u, ®d) over the time interval t ∈ [0,δ] i� for all (a) initial

conditions ®x(0) ∈ X, (b) control inputs ®u ∈ U (assumed to be held constant over [0, t]), and (c)

(time-varying) disturbance signals
®d(t) ∈ D, the state ®x(t) reachable at any time 0 ≤ t ≤ δ satis�es

the relation T (®x(t), ®x(0), ®u, t).

®x(t) = φf (t , ®x(0), ®u, ®d(·)) → T (®x(t), ®x(0), ®u, t) .

The relations contain everything that can be reached by the underlying dynamics. On the other

hand, the relations will often be over approximations of the underlying system. As a result, although

T (®x(t), ®x(0), ®u, t) may hold, ®x(t) is not reachable from ®x(0) through the choice of inputs ®u and time

t and any valid choice for the disturbance signal
®d(·). Since the overall abstraction is composed

with a controller that is time triggered, the control input ®u is assumed to be held constant over

the time period [0,δ] of the relational abstraction. Finally, the relational abstraction holds over all

possible choices of the disturbance signals
®d(t) ∈ D. However, the disturbance input itself is not

part of the relation.

In this paper, we distinguish between two types of relations that will be computed: (a) time-aware
relations (as de�ned in Def. 2.1) explicitly involve time t as a variable [35], and (b) �xed-time relations
that �x time t to a speci�c value t = δ . Naturally, a �xed-time relation can be inferred given a

time-aware relation by simply substituting the �xed value δ for time. For a time triggered system,

as de�ned in Section 2.1, we will seek a �xed-time relation, �xing t = δ , the time period of the

controller. However, as we will subsequently show, the derivation of time-aware relations will be a

critical step towards computing �xed-time relations.

Form of the Relation: Modern SMT-based veri�cation tools can e�ciently handle systems whose

transitions can be expressed in linear arithmetic [20, 23]. Recall that a linear arithmetic formula

over a set of variables X is de�ned as a Boolean combination of linear inequalities over X .

In this paper, we will �rst examine relations polynomial in the time variable and linear in the

state/control variables.

De�nition 2.2 (Polynomial Time Linear State (PTLS) Predicates). A predicate T(®x(t), ®x(0), ®u, t) is

said to be polynomial in time and linear in the state and controls (PTLS) i� it is of the form:

®x(t) ∈ P(t)®x(0) +Q(t)®u + p(t) + I ,

wherein P(t),Q(t) are matrices whose entries are polynomials over time t , p(t) is a polynomial and

I is a vector of intervals.

The (time-aware) relational abstractions will be of the form:

N∧
i=1

φi (®x(0), ®u)︸ ︷︷ ︸
Linear Arithmetic

→ Ti (®x(t), ®x(0), ®u, t)︸ ︷︷ ︸
PTLS

. (3)

Fixing t = δ in (3) yields a linear arithmetic relation.

Lemma 2.3. Given a relation T of the form shown in (3), �xing time t = δ for a constant δ yields a
relation R : T (®x(δ), ®x(0), ®u,δ) expressible in linear arithmetic.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:6 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

2.3 Linear Systems and Relational Abstractions
We �rst consider linear plant models of the form

Û®x = A®x + B®u +W ®d , (4)

wherein A,B andW are constant matrices. The closed-form solution of the linear ODE is given by

®x(t) = eAt ®x(0) +

∫ t

0

eA(t−s)(B®u(s) +W ®d(s))ds .

Zutshi et al. [46] compute �xed time relations of the form

R(®x(δ), ®x(0), ®u) expressed as linear arithmetic formula of the form: ®x(t) ∈ P ®x(0) +Q ®u + I , wherein

P := eAδ and Q :=
∫ δ
0
eA(δ−s)Bds . The technique does not handle disturbance inputs, as such.

Furthermore, the techniques does not handle time-aware relations.

Mover et al. [35] improved upon previous work by computing time aware abstractionsT (®x(t), ®x(0), ®u, t).
However, their approach computes relations that are linear in time t , as well. As a result, these

abstractions lead to reduced overall precision when we compute �xed time relations for t = δ .

Therefore, as introduced by Chen [11], for given �xed control inputs ®u and possibly time-varying

disturbance
®d(t), the matrix exponential eAt and the integral

∫ t
0
eA(t−s)Bds can be approximated by

a polynomial matrices Φ(t) and Ψ(t) respectively. Furthermore, as the degree of the matrices in t is

increased, so does the resulting accuracy. The disturbance term

∫ t
0
eA(t−s)W ®d(s)ds is handled using

approaches speci�c to time-varying disturbances
®d ∈ D as a polynomial q(t). The error bounds are

computed as an interval I , so that the resulting relation T is obtained as a PTLS relation:

T (®x(t), ®x(0), ®u, t) : ®x ′ ∈ Φ(t)®x(0) + Ψ(t)®u + q(t) + I .

Example 2.4. We consider the dynamics of θ in the motivating example:
Ûθ = −3(θ − θref) + dθ (t),

such that θref ∈ [−π/3,π/3], and dθ (t) ∈ [−0.1, 0.1]. For θ (0) ∈ [−π/3,π/3], the relation for

t ∈ [0, 0.02] can be computed as below.

θ (t) ∈ θ (0) + 3tθref − 2.999tθ (0) − 4.499t
2 ∗ θref + 4.5t

2θ (0)

+ 4.5t3θref − 4.499 ∗ t
3 ∗ θ (0) + [−0.024, 0.024]

2.4 Taylor Model Integration
We brie�y review the method of Taylor model integration that forms a fundamental primitive for

�owpipe construction techniques for nonlinear systems [6, 7, 12, 13, 36].

De�nition 2.5 (Taylor model). A Taylor Model (TM) is de�ned by a pair (p(®x), I) such that p(®x) is

a polynomial over ®x ∈ D for an interval D, and I is an interval.

Given a smooth function f (®x) over D, we may compute a TM (p(x), I) so that ∀x ∈ D : (f (x) ∈
p(x) + I). TMs can be used to overapproximate the solutions of nonlinear ODEs. Given a nonlinear

ODE
Û®x = f (®x , ®u, ®d) along with an initial condition ®x(0) ∈ X0, the �owmap φf can be overapproxi-

mated by a TM (pf , If):

φf (t , ®x(0), ®u, ®d) ∈ pf (t , ®x(0), ®u) + If (5)

for all ®x(0) ∈ X , t ∈ [0,δ] and disturbance
®d . The method to compute such a TM is called Taylor

model integration [7].

Extensions to handle time varying disturbances inside a bounded range were introduced by

Chen [11].

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:7

Example 2.6. We consider the dynamics of the velocityv in the motivating example. It is de�ned by

the ODE Ûv = −dv (t)v
2+u+du (t)wherein dv ∈ [0.009, 0.01] and du ∈ [−0.45, 0.45] are time-varying

disturbances, u ∈ [−6, 6] is a time-invariant input. By the TM integration method, the �owmap in

the time interval [0, 0.02] w.r.t. the initial condition v(0) ∈ [10, 15] can be overapproximated by the

order 4 TM (pf , If) wherein

pf = v + 0.45t + tu + 0.176t
2 − 0.0095tv2

0
− 0.042t2v0 + 0.063t

3

− 0.0095t2v0u + 0.0033t
2v2

0
+ 0.019t3u − 0.0067t3v0 + 0.0025t

4

If = [−0.0025, 0.00238]

such that v0 is the symbolic representation of v(0).

3 ADAPTIVE RELATIONAL ABSTRACTION
The purpose of relational abstraction is to compute a relationT for an ODE

Û®x = f (®x , ®u, ®d) such that

(®x ′ = φf (t , ®x , ®u, ®d)) → T (®x ′, ®x , ®u, t) (6)

holds for all t ≥ 0 and ®x , ®x ′ in the state space. To obtain a �xed-time relation R, we may simply

replace t = δ in the relation T . The problem of relationizing linear ODEs has been well studied [35,

47]. In this paper, we study a general approach for nonlinear ODEs.

For ®x ∈ X , ®u ∈ U and t ∈ ∆t for an interval ∆t , we may compute a Taylor model (pf , If) for φf
wrt the initial condition ®x(0) ∈ X in the time interval ∆t .

De�nition 3.1 (Linear Truncation). The linear trunction of a TM (p(®x0, t), I) of a TM over ®x0 ∈ X
and t ∈ ∆t is a TM (pL(®x0, t), IL) that is linear in ®x0 and potentially polynomial over t . The resulting

interval IL is a conservative approximation:

IL ⊇ I + range®x0∈X ,t ∈∆t (p − pL) .

To compute a relation in the PTLS form (see De�nition 2.2), a simple strategy can be applied:

(1) Partition the possibly large set X ×U into smaller sets

(X1 ×U1) ∪ · · · ∪ (XK ×UK).

(2) Compute a Taylor model (pj (t , ®x0, ®u), Ij) for each (®x(0), ®u) ∈ X j ×Uj .

(3) Perform a linear truncation to obtain (pLj , ILj).
(4) The overall relation T (®x ′, ®x(0), ®u, t) is obtained as

K∧
1

(®x(0) ∈ X j ∧ ®u ∈ Uj) → (®x ′ ∈ pjL(®x(0), ®u, t) + IjL)

Unfortunately, it has been pointed out that computing TMs is challenging when X ×U is large

(see [11, 32]). At the same time, a uniform subdivision of X ×U is expensive. Therefore, as a �rst

step, we will consider an adaptive algorithm that will subdivide the region X × U so that the

width of each interval width(ILj) ≤ wmax, for a user de�ned threshold. The technique is shown in

Algorithm 1.

In each iteration, the algorithm tries to compute a relation for the �rst region X ×U in the queue.

If the TM integration method along with the linear truncation produces a TM whose width is

small enough, then we add the current TM to the abstraction. Otherwise, the region Y is uniformly

subdivided along each dimension, and the results are added to the queue.

Assume that T (®x ′, ®x , ®u, t) is the result generated by Algorithm 1 for some t ∈ [0,δ].

Theorem 3.2. T is a valid relational abstraction, satisfying the condition in (6).

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:8 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

Algorithm 1 Relational abstraction for a nonlinear ODE

Input: An ODE
Û®x = f (®x , ®u, ®d), a region X , a time interval ∆t , a width cuto� wmax.

Output: A relational abstraction Abs over X ,U .

1: Abs← >; # formula for abstraction

2: Queue← ∅; # queue for unprocessed regions

3: Enqueue the entire domain (X ,U) to Queue;

4: while Queue is not empty do
5: Dequeue (X j ,Uj) from Queue;

6: Compute TM (pf , If) with t ∈ ∆t for ®x(0)∈X j , ®u ∈ Uj ;

7: Linear truncate (pf , If) to (pL, IL);
8: if width(IL) ≤ wmax then
9: Abs← Abs ∧ ((®x ∈ X j ∧ ®u ∈ Uj) → (®x

′ ∈ pL(t , ®x , ®u) + IL));
10: else
11: Uniformly subdivide X j ×Uj into Y1, . . . ,Yr ;

12: Enqueue each Y1, . . . ,Yr into Queue;

13: end if
14: end while
15: return Abs;

Although the adaptive subdivision algorithm improves upon the basic uniform subdivision

scheme, it continues to be expensive since it involves subdividing over the entire state space. We

alleviate this further in the next section by considering a compositional approach for subsets of the

state variables.

4 COMPOSITIONAL RELATIONAL ABSTRACTION
In this section, we consider compositional relational abstractions that are obtained as a conjunction

of relations over subsets of variables. In a compositional relation, the state variables ®x and control

inputs ®u are partitioned into subsets ®x1, ®u1, ®x2, . . . , ®xk , ®uk such that all state variables appear in at

least one subset ®x j , and control variables in some ®uj . A relation T (®x ′, ®x , ®u, t) is of the form

T1(®x
′
1
, ®x1, ®u1, t) ∧ T2(®x

′
2
, ®x2, ®u2, t) ∧ · · · ∧ Tk (®x

′
k , ®xk , ®uk , t) ,

wherein each relation Ti is said to be a factor. Compositional relations are naturally obtained by

considering the plant model as a composition of multiple smaller components over the subset of

the entire state space. Even if the plant model is obtained as a “monolithic” ODE, it is possible to

de�ne components by considering a dependency graph between the state and control variables.

The idea of studying state variable dependencies has been applied to �owpipe construction [15],

stability analysis [43] and computing di�erential invariants [38]. Here, we use it to compositionally

compute relational abstractions.

De�nition 4.1. Given an ODE
Û®x = f (®x , ®u, ®d), a dependency graph has vertices corresponding to

each state variable xi and control variable uj . An edge is added from x j (or uj) to xi if the RHS for

dxi
dt involves x j (or uj). Self-edges are elided from this graph.

A decomposition of the strongly connected components over the states of the dependency graph

allows us to decompose a plant that is not given as a composition of components.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:9

®u1
Z1

Û®x1 = f1(®x1, ®u1, ®d1)
®uz

...
...

Z
Û®xz = fz (®xz, ®uz, ®x1,z, . . . , ®xk,z, ®dz)

®uk
Zk

Û®xk = fk (®xk , ®uk , ®dk)

®x1,z

®xk,z

Fig. 3. Schematic diagram for basic composition step.

Example 4.2. Consider the vehicle plant model in Section 1.1. The dependency graph is shown

below to the left. Each node in this graph is its own SCC. As a result, the components each contain

a single variable, and are shown to the right.

u v x

θref θ y

u v x

θref θ y

The composed relation has the following structure:

T1(v
′,v(0),u, t) ∧ T2(θ

′,θ (0),θr ef , t) ∧
T3(x

′,x(0),θ (0),v(0),u,θr ef , t) ∧
T4(y

′,y(0),θ (0),v(0),u,θr ef , t)

The advantages of a compositional approach are three-fold: (a) it avoids an unnecessary de-

composition of the entire state/control space while creating the relations. Therefore, we expect a

computationally faster approach with a more succinct resulting relational abstraction. (b) In many

plant models, some of the components will be linear, and thus can be handled more e�ciently with

a simpler and more scalable approach sketched in Section 2.3; and (c) the interconnections between

components is often sparse, i.e, even if a component involves numerous state variables, often a very

small subset of these are treated as “outputs” seen by the other components. We will exploit each

of these common features.

4.1 Composing Relations
In this section, we consider a single composition step involving the composition of components

Z1, . . . ,Zk that have been previously relationalized to obtain a relation for a component Z , as

shown in Figure 3. Let ®x1, . . . , ®xk be the state variables and ®u1, . . . , ®uk be the control inputs for

components Z1, . . . ,Zk . Furthermore, let ®xz , ®uz be the state variables for the component Z which

depends on Z1, . . . ,Zk . We will assume that the variables ®x j,z are the interface variables from ®x j
used in component Z .

Considering each of the components Z1, . . . ,Zk in turn, we construct relations T1(®x
′
1
, ®x1, ®u1, t),

. . ., Tk (®x
′
k , ®xk , ®uk , t) in the PTLS form (see De�nition 2.2). Speci�cally, let Tj be of the form∧

i

φi, j (®x j (0), ®uj) → ®x j (t) ∈ Mi, j (t)®x j (0) + Ni, j ®uj + pi, j (t) + Ii, j .

The predicates φi, j represent the subdivisions over the space ®x j , ®uj . For each combination of

the predicates φi1,1, . . . ,φik ,k of the components Z1, . . . ,Zk , we collect the resulting TMs on the

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:10 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

interface variables ®x1,z , . . . , ®xk,z and substitute these into the ODE for the component Z . The result

is a new ODE of the form

Û®xz = fz (®xz , ®uz , ®x1(0), . . . , ®xk (0), ®u1, . . . , ®uk , t)

Since ®x1(0), . . . , ®xk (0), ®u1, . . . , ®uk are constants over the time interval t ∈ [0,δ], we proceed to

perform a TM integration of this system following the adaptive scheme de�ned in Algorithm 1.

As such, if the relationsT1, . . . ,Tk have n1, . . . ,nk decompositions each, the target relation for Z
will require n1 × · · · × nk calls to Algorithm 1. Each call further subdivides ®xz . Furthermore, if Z
itself is composed with another block Ẑ , up stream, the number of subdivisions can be forbiddingly

large.

However, despite this explosion, we have already saved on unnecessary splitting of the state

variables for the components Z1, . . . ,Zk in this process. We now consider two optimizations for

mitigating the need to consider a combinatorial blowup for the component Z : (a) selective adaptive

decomposition of the interface variables; and (b) composition into a linear component.

4.2 Interface Variable Adaptive Decomposition
The �rst optimization to improve the basic composition focuses on the interface variables ®x1,z , . . . , ®xk,z
between components in Figure 3. Thus far, we independently abstract each of the components

Z1, . . . ,Zk to obtain relationsT1, . . . ,Tk that serve two purposes: (a) they abstract the corresponding

components, and (b) the relations for the interface variables are then used to obtain the composed

relation for Z .

However, note that Algorithm 1 is adaptive with respect to a maximum width wmax over all the

variables of the component under abstraction. Nevertheless, for the purposes of composition, the

variables that matter are the interface variables ®x1,z , . . . , ®xk,z .

To mitigate this, we create new relations for the purposes of composition: T̃1, . . . , T̃k by modifying

Algorithm 1 in addition to the original relations T1, . . . ,Tk .

Each relation T̃i is created by a modi�cation of the adaptive subdivision in Algorithm 1 such

that the maximum width wmax is checked just for the intervals over the interface variables ®xi,z . In

this modi�ed setup, the relations T̃1, . . . , T̃k are created for composition, wherein for each i ∈ [1,k],
T̃i (®xi,z (t), ®xi (0), ®ui , t) is a relation that focuses on a subset of variables rather than the entire state

space.

4.3 Composition Into Linear Components
Another important case is when Z is linear over the variables ®xz . In our experience, linear compo-

nents are very common even if the system as a whole is nonlinear. In particular, given relations

T̃1, . . . , T̃k for Z1, . . . ,Zk , we can relationalize Z without any further calls to Algorithm 1, or in other

words, without necessarily requiring us to split the state space of ®xz .

Example 4.3. Continuing with the components in Example 4.2, we note that the component over

θ is linear. Surprisingly, due to the decomposition, components for x ,y are in fact linear over x ,y
although they are nonlinear over v,θ .

Ûx = v cos(θ), Ûy = v sin(θ)

In this simple case note that once we obtain relations for v,θ , the relation for x is readily computed

as

x(t) = x(0) +

∫ t

0

v(s) cos(θ (s))ds .

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:11

Similar consideration applies to y(t). The rest of this section formalizes this insight for the general

case of linear components Z .

Let us write the dynamics for ®xz as

d

dt
®xz = A®xz + д(®uz , ®x1,k , . . . , ®xk,z) .

The overall relation can be written as

®xz (t) = etA ®xz (0) +

∫ t

0

e(t−s)Aд(®uz (s), ®x1,k (s), . . . , ®xk,z (s))ds . (7)

We proceed by �rst approximating etA by a TM Φ(t) and e(t−s)A by Ψ(t), wherein Φ,Ψ represent

polynomial matrices and the corresponding error intervals over t ∈ [0,δ].

®xz (t) ∈ Φ(t)®xz (0) +

∫ t

0

Ψ(s)д(®uz (s), ®x1,k (s), . . . , ®xk,z (s))ds . (8)

Next, we consider the expressions for ®x1,k (s), . . . , ®xk,z (s)

®x j,k (s) := Mj,k (s)®x j (0) + Nj,k ®uj + pj,k + Ij,k (9)

Plugging the expressions from (9) into (8), we obtain

®xz (t) ∈ Φ(t)®xz (0) +

∫ t

0

Ψ(s) д̂

(
®uz (s), ®x1,k (0), . . . , ®xk,z (0), s,

®u1, . . . , ®uk

)
ds .

We now compute a TM for ®xz (t) by performing the integration above, which may in turn require

approximating д̂ by a polynomial using Taylor expansion.

Thus, if relations for Z1, . . . ,Zk are already available and the component Z is linear, its relation

is constructed without needing any further calls to Algorithm 1, i.e, without decomposing ®xz .

5 EXPERIMENTS
Implementation. We implemented a prototype tool for computing relational abstractions for

hybrid systems. Given a continuous dynamics de�ned by a composed nonlinear ODE, the tool

computes TM �owpipes of a given order using Flow* [13], and then merges and translates the

�owpipes to obtain a linear relational abstraction. Although the abstraction de�nes a discrete

system, it is still an overapproximation of the hybrid system on the behaviors at each abstraction

time step. In order to input the abstraction to a model checker, we express it in the input language

of nuXmv [10]. We try two model checking algorithms implemented in nuXmv: Bounded Model

Checking (BMC) and a version of IC3 for in�nite-state systems [17] to prove a property on an

abstraction.

Performance evaluation. We evaluate the performance based on the time cost for proving the

safety property of a hybrid system. More precisely, given a hybrid system along with a safe set,

we derive a relational abstraction for it based on a time step size. Then we try to prove that the

reachable set at each discrete time step is contained in the safe set. Hence, the total cost includes

the time consumed to compute an abstraction and the time consumed to prove the safety or �nd a

counterexample.

Comparison. We mainly compare our relational abstraction method to the �owpipe construction

technique implemented in Flow*. Since we only reason the safety at discrete time steps for the

hybrid system, to be fair, the tests on Flow* are implemented based on its C++ API instead of

the user interface which proves the safety for the whole time interval. Since the abstraction is an

overapproximation of the original hybrid system, if the abstraction is safe then so is the original

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:12 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

Table 1. Properties for the Car benchmark

Property # Property

1 �v ≥ 9 13 �m = 5 ∧ time ≥ 5→ θ ≤ 0.6
2 �v ≤ 25 14 �(x ∈ [0, 500] → y ≤ x + 10)
3 �m = 1→ θ ≤ 0.9 15 �(x ∈ [100, 500] → 4y ≥ 3.5x − 350)
4 �m = 1 ∧ time ≥ 10→ θ ≥ 0.6 16 �(x ∈ [0, 100] → y ≥ −10)
5 �m = 2→ θ ≤ 0.9 17 �(x ∈ [500, 1000] → y ≤ 450)

6 �m = 2 ∧ time ≥ 10→ θ ≤ 0.1 18 �(x ∈ [500, 1000] → y ≥ 380)

7 �m = 2→ θ ≥ −0.1 19 �(x ∈ [1000, 1500] → y + 0.7x ≥ 1100)

8 �m = 3→ θ ≥ −0.9 20 �(x ∈ [1000, 1500] → y + 0.7x ≤ 1200)

9 �m = 3 ∧ time ≥ 10→ θ ≤ −0.6 21 �(x ∈ [1500, 2000] → y ≥ −50)
10 �m = 4→ θ ≤ 0.9 22 �(x ∈ [1500, 2000] → y ≤ 100)

11 �m = 4 ∧ time ≥ 20→ θ ≥ 0.6 23 �(x ∈ [2000, 2500] → y ≥ 0.8x − 1600)
12 �m = 5→ θ ≥ 0.4 24 �(x ∈ [2000, 2500] → y ≤ 0.8x − 1500)

model. Hence, the comparison is based on proving the safety of the same system. If the safety can

not be proved, we compare the number of steps where a counterexample is found, the larger the

number, the better the result. Besides, we also provide comparisons between compositionally and

monolithically computing relational abstractions, in the �rst way, we only perform subdivision in

the dimensions of interface variables.

5.1 Benchmarks and Results
We present our benchmarks as well as the experiments as follows.

Single car. The dynamics of a single car is given in our motivating example. We try to prove

the 24 safety properties shown in Table 1 in whichm is the mode of the heading controller, time
counts the number of control steps, i.e., time steps, which is 0.01. In Flow*, we use the step size

0.01, the TM order 4, the cuto� threshold 10
−10

and the precision 100 for �oating-point numbers.

The experimental results are given in Table 3. We also notice that by increasing the TM order and

reducing the step size can not apparently improve the results due to the large uncertainties. For

relational abstraction, we try to compute results according to di�erent accuracies. Table 2 shows

the experimental results. The system has 3 linear variables and 3 nonlinear variables. If we consider

the linear variables form a component and the nonlinear variables form another one, then the

interface variables are v and θ . It can be seen that the compositional method requires much less

time on the same accuracy. Table 3 presents the time costs of proving the 24 properties on the

compositional abstraction from Test #2 in Table 2. The results are better than the direct method in

Flow* in most of the tests.

Car platoon of 3 cars. We consider the model of a platoon of 3 single cars each of which has the

dynamics in the previous benchmark. The model is inspired by a continuous time system proposed

by Chen et al. [15]. The 1st and the 3rd cars are driven manually, whereas the controller for the

2nd car chooses a velocity control that maintains its position in the middle of the two cars. Each

car implements the same heading control law as used in the motivating example. But rather than

consider changes in the road angle, we simply consider a single segment straight road with θ1 = 0.

The velocity control inputs u1,u3 for the 1st and the 3rd car respectively are treated as uncertain-

ties in relational abstraction. For each car, the input is ranging in [−2,−0.5] when the car velocity

is larger than 22, [−2, 2] when the velocity is in [18, 22], and [0.5, 2] when the velocity is below 18.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:13

Table 2. Experiments of computing relational abstractions. Legend: δ : time step for fixed-step abstraction;
wmax: accuracy tolerance; VarL : # of linear variables; VarN : # of nonlinear variables; VarI : selected interface
variables; Sub: # of subdivisions.

of variables Compositional Monolithic

No. Benchmark δ wmax VarL VarN VarI T (sec) Sub T (sec) Sub

1 Single car 0.05 0.5

3 3 v,θ

0.05 1 0.07 1

2 Single car 0.1 0.5 0.8 4 13 64

3 Single car 0.1 1.5 0.1 1 0.2 1

4 Single car 0.1 0.2 3.5 22 >1200 ≥ 8
6

5 Arti�cial pancreas 0.5 1

3 9 Gp ,Gt

4.9 4 >1200 ≥ 2
12

6 Arti�cial pancreas 0.5 2 1 1 1 1

7 Arti�cial pancreas 5 10 563 4 >1200 ≥ 2
12

8 Arti�cial pancreas 0.5 0.05 7.6 28 >1200 ≥ 2
12

The controller for the middle car chooses the velocity as

u2 = max(−5,min(5, û2)) such that

û2 ∈ −0.3 ∗ (v2 − 20) + 0.3 ∗

(
(x3 − x2 − 10 + [−0.1, 0.1])
−(x2 − x1 − 10 + [−0.1, 0.1])

)

The safety properties are de�ned as follows. Property 1: �(x2 − x1 > 2), i.e., the 1st and the 2nd will

never be too close. Property 2: �(x3 − x2 > 2), i.e., the 2nd and the 3rd will never be too close.

Since each car can be abstracted independently, we take the compositional abstraction result

of Test #2 in Table 2. The time costs for proving the two properties are presented in Table 3. For

Flow*, we use the same computational setting for the single car model, and the check the safety

of the reachable set at discrete steps. The tool can not compute a valid overapproximation that

reaches x ≥ 500 due to the large time-varying uncertainties. We tried much higher TM order and

much smaller step size, but no apparent improvement can be made. The relational abstraction

method is slightly better than Flow* but quite sensitive to the solver in use. Again, both of Flow*

and the abstraction method prove the safety on the same system, since the abstraction is an

overapproximation of the original system at discrete steps.

Car platoon of 7 cars. We extend the previous model to 7 cars. The 1st, 3rd, 5th and 7th cars are

driven manually, and the rest of the cars are controlled similarly to the 2nd car in the previous

model. If no successive two cars are within the distance less than 2 than the system is safe. The

experimental results are presented in Table 3 with the abstractions from Table 2. Notice that when

the abstraction # 4 is taken, the whole abstraction has 154 subdivisions.

Arti�cial pancreas. We consider the arti�cial pancreas control systems that automatically adjust

the delivery of the hormone insulin to patient with type-1 diabetes to control their blood glucose

levels in a closed loop. The plant model for the arti�cial pancreas benchmarks capture the human

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:14 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

insulin-glucose regulation system using a nonlinear ODE with 10 state variables shown below

ÛX = −0.0278X + 0.0278(18.2129Ip − 100.25)
ÛIsc1 = 0.0142Isc1 − 0.0078Isc2 +uI (t)
ÛIsc2 = 0.0152Isc1 − 0.0078Isc2
ÛGt = −0.0039(3.2267 + 0.0313X)Gt (1 − 0.0026Gt+

2.5097e-6G2

t) + 0.0581Gp − 0.0871Gt
ÛGp = 3.7314 − 0.0047Gp − 0.0121Id

−0.0581Gp + 0.0871Gt +um(t)
ÛIl = −0.4219Il + 0.225Ip
ÛIp = −0.315Ip + 0.1545Il + 1.9e-3Isc1 + 7.8e-3Isc2
ÛI1 = −0.0046(I1 − 18.2129Ip)
ÛId = −0.0046(Id − I1)
ÛGs = 0.1(0.5521Gp −Gs)

The model has two inputsuI (t) a controlled input from the insulin glucose controller andum(t), an

uncontrolled meal input that introduces glucose due to the patient’s meal. A detailed explanation

and rationale for the model and the various model parameters are available elsewhere [18, 33]. The

system as a whole is partitioned into two components using a dependency graph analysis:

Z1 : {X , Isc1, Isc2, Ip , Il , I1, Id ,uI }, Z2 : {Gt ,Gp ,Gs ,um}

We note that Z1 is linear whereas Z2 is nonlinear. The interface variables Gt ,Gp are selected as

the variables whose ranges are to be decomposed to obtain a relational abstraction.

The meal input is modeled by a simple nondeterministic component that selects an upper bound

on the amount of glucose appearing in the blood stream due to the meal at various times after the

ingestion of the meal. The ranges for the nondeterministic meal input um(t) is de�ned according

to di�erent time intervals: um ∈ [0, 20] for t ∈ [0, 30], um ∈ [0, 10] for t ∈ (30, 80], um ∈ [0, 4]
for t ∈ (80, 360], um ∈ [0, 2] for t ∈ (360, 400], um ∈ [0, 1] for t ∈ (400, 500], and um ∈ [0, 0] for

t ∈ (500,+∞).
We consider three di�erent controllers for deciding uI (t), the insulin input to the model. C1,C2

are a multi-basal arti�cial pancreas controller described in the recent work of Chen et al. [14].C3 is a

PID control algorithm with saturation and anti-windup compensation, as described by Weinzimer et

al. [45] (see also Cameron et al. [9]). Controllers based on this algorithm have undergone advanced

stage clinical trials and form the basis for a product.

We consider two safety properties for our study. Property 1: The blood glucose level of the patient

must not fall below 70 mg/dl (the clinical limit for hypoglycemia onset), i.e, �(Gs ≥ 70). Property 2:
The blood glucose levels of the patient cannot exceed 300 mg/dl (the clinical limit for the onset of

ketoacidosis), i.e, �(Gs ≤ 300). Since the system model here is with large uncertainties, we would

like to �nd the largest step number below which the system is safe.

Table 2 gives the computation costs for generating relational abstractions. Because of the large

uncertainties, we have to consider large tolerance wmax, and still, compositional abstraction is

much better than the monolithic one due to the small number of interface variables. For the safety

proof, we always use the step size 0.2, the TM order 4, the cuto� threshold 10
−8

and the precision

256 in Flow*. The results are better than using IC3 in most cases, however worse than those from

using BMC. Although the time costs from Flow* seem to be better, the tool can not prove the

safety for more than 7 steps. As we tried the step size 0.002 and TM order 6, the tool still found a

counterexample at the 7th step after more than 1800s computation time.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:15

5.2 Discussion
We brie�y discuss our observations on the applicability of the relational abstraction method

presented in the paper.

1. The proposed approach can better handle some nontrivial veri�cation tasks. In some cases, we

are even able to �nd inductive invariants through IC3, thanks to the relational abstraction.

2. The main focus of our paper was on building the abstraction compositionally, focussing especially

on handling compositions with linear subsystems e�ectively. This applies to many systems, built

from such compositions. Otherwise, the explosion in the number of subdivisions is unavoidable in

a general nonlinear system.

3. Another key advantage is that we can subdivide over the interface variables between components

rather than the entire state space while maintaining the same accuracy.

4. We note that once the abstract model is built, checking properties remains challenging using

existing linear arithmetic SMT solvers that underlie model checkers such as NuXMV. First, a

large number of subdivisions may be a computational burden for the model checker: a promising

future direction is to consider subdivisions on the �y, adapting our approach to a SAT-modulo ODE

approach used in solvers such as dReach and iSAT [25, 28, 30]. Furthermore, existing SMT solvers use

in�nite precision arithmetic to reason about the �oating point coe�cients of the abstractions. This

reasoning is expensive, and the solving time would be greatly improved by adopting �oating-point

arithmetic.

6 RELATEDWORK
The formal veri�cation of nonlinear hybrid systems is an important problem that has led to

numerous approaches. In light of this paper, we broadly classify them into the approaches that

conclude reachability directly based on the system dynamics vs. those based on an abstraction

of the system. The approach in this paper belongs to the latter category. Examples of the �rst

category include deductive veri�cation to prove properties [37], �owpipe construction [2, 12, 26, 31],

simulation-based falsi�cation [1, 21], level set methods [34] bounded-model checking [24, 25, 27,

28, 40] and a number of abstraction-based techniques discussed below.

There are many types of abstraction-based approaches for hybrid systems that are classi�ed based

on the type of abstraction sought: (a) abstraction to �nite state systems vs. in�nite state abstractions;

and (b) separate abstraction of a plant and control vs. a joint abstraction of the closed-loop hybrid

system as a whole.

Predicate abstraction approaches studied by Alur et al. focus on deriving �nite-state abstractions

using an initial set of predicates provided by the user [3, 4]. Further predicates are derived using

counter-example guided re�nement. Predicate abstractions are advantageous since they yield �nite

state systems that can be e�ciently checked when the number of predicates is small. However, due

to the exponential growth in the number of states as a function of the number of predicates added,

these approaches su�er from state-space explosion especially for nonlinear dynamics. In contrast,

our approach does not rely on predicates and constructs an in�nite state abstraction in the form of

discrete linear relations.

Another form of abstraction called hybridization involves the simpli�cation of nonlinear dynamics

by simpler dynamics such as a�ne inclusions or piecewise linear dynamics [19, 44]. This approach

converts a nonlinear dynamics into piecewise a�ne or polyhedral inclusions by considering

subdivisions of the state-space. An important di�erence between our approach and hybridization

is that whereas hybridization abstracts the dynamics, our approach abstracts the solutions of the

dynamics. As a result, our abstraction continues to be valid even when the dynamics leaves the

partition corresponding to the initial condition. Whereas, hybridization can be applied up front to

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:16 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

Table 3. Verification results. Legend: Model: name of the verified benchmark. For the artificial pancreas
model, we specify the abstraction that we used in each line (#4, #5, #6 in Table 2); Property : # of the property
in verification; Safe: Y - the property is proved, N - a (possible) counterexample is found, U - unknown; T :
time cost for verification, TO: > 600 seconds; Abs. steps: # of steps explored in the model checker; Steps: the
corresponding # of the discrete steps of the system; Notice that if the result is unknown, then the system is
safe up to this number of steps; −: Flow* fails to compute a valid overapproximation.

Abstraction veri�cation using SMT Flow*

BMC IC3

Model / Property Safe T (sec) Steps Abs. steps Safe T (sec) Steps Abs. steps Safe T (sec) Steps
Car/1 N 8.4 17 35 N 264.8 18 37 N 0.3 2

Car/2 U 71 7974 15965 Y 0.24 3 6 N 4.1 29

Car/3 N 6.8 8 17 U TO 9 19 N 8.9 47

Car/4 N 0.2 9 18 N 2.3 7 15 N 1.1 10

Car/5 U 331 11 23 U TO 11 23 F − −

Car/6 U 440 16 33 U TO 15 31 F − −

Car/7 U 536 9 19 U TO 10 21 F − −

Car/8 U 29.0 14 29 U TO 13 26 F − −

Car/9 U 23.0 11 23 U TO 14 29 F − −

Car/10 U 68.0 7974 15948 Y 0.04 1 3 F − −

Car/11 U 68.0 7974 15797 Y 0.03 1 3 F − −

Car/12 U 68.0 7974 15948 Y 0.01 1 2 F − −

Car/13 U 68.0 7974 15797 Y 0.01 1 2 F − −

Car/14 N 256.9 7 15 U TO 6 13 N 2.6 21

Car/15 U 434.0 9 19 U TO 14 29 N 6.8 40

Car/16 N 169.2 7 15 U TO 6 13 N 1.8 16

Car/17 U 366.0 7 15 U TO 8 17 F − −

Car/18 U 291.0 10 21 U TO 14 29 F − −

Car/19 U 592.0 11 23 U TO 16 32 F − −

Car/20 U 380 8 17 U TO 13 27 F − −

Car/21 U 68.0 7974 15857 Y 0.01 1 2 F − −

Car/22 U 69.0 7974 15857 Y 0.01 1 2 F − −

Car/23 U 70.0 7974 15857 Y 0.02 1 2 F − −

Car/24 U 70.0 7974 15857 Y 0.02 1 2 F − −

Platoon/1 N 475.7 2 5 N 9.5 1 3 N 3.6 3

Platoon/2 N 9.4 1 3 U TO 2 4 N 3.2 3

7 Car Platoon, #2 U 25.8 3 7 U TO 3 7

N 8.2 3

7 Car Platoon, #4 U 103 2 4 U TO 1 3

Arti�cial Pancreas, C1, #5 / 1 U 179 20 203 U TO 1 12

N 16 7Arti�cial Pancreas, C1, #6 / 1 U 252 2 24 U TO 0 4

Arti�cial Pancreas, C1, #7 / 1 U 431 11 22 U TO 3 6

Arti�cial Pancreas, C1, #8 / 1 U 313.7 1 14 U TO 0 5

Arti�cial Pancreas, C2, #5 / 1 U 179 20 203 U TO 1 12

N 17 7Arti�cial Pancreas, C2, #6 / 1 U 251 2 24 U TO 0 5

Arti�cial Pancreas, C2, #7 / 1 U 303 11 22 U TO 3 7

Arti�cial Pancreas, C2, #8 / 1 U 231.8 1 14 U TO 1 6

Arti�cial Pancreas, C3, #5 / 1 U 185 20 203 U TO 1 12

N 13 7Arti�cial Pancreas, C3, #6 / 1 U 541 9 19 U TO 0 5

Arti�cial Pancreas, C3, #7 / 1 U 148 8 16 U TO 2 5

Arti�cial Pancreas, C3, #8 / 1 U 453.2 1 13 U TO 0 5

�rst create an abstraction and then verify it, most successful approaches pursue hybridization on

the �y. However, in this paper, we do not compute the abstractions on-the-�y in order to allow us

to use existing tools like NuXMV o�-the-shelf.

Finally, the idea of a relational abstraction has been well-studied for linear systems, often for

di�erent purposes [35, 42, 47]. Tiwari and Sankaranarayanan consider the construction of relational

abstractions R(®x ′, ®x) that relate the current state of the system to any future state at an arbitrary time

in the future [42]. However, computing these relations is often very di�cult, requiring assumptions

about the form of the dynamics. Further, these relations are imprecise for the purposes of verifying

time triggered systems. Subsequently, Zutshi et al. proposed timed relational abstractions that relate

R(®x(δ), ®x(0)) for a �xed time step δ [47], speci�cally for time-triggered controller veri�cation. This

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:17

is the same form of relationalization used in this paper for nonlinear systems. Mover et al. proposed

a time-aware scheme that computes relations of the form R(®x(t), ®x(0), t) with time t as an explicit

argument [35]. In this paper, time aware relations of a more general form are considered as an

intermediate step towards computing �xed time step relations. Podelski and Wagner propose binary
reachability relations that are special relational abstractions for proving stability properties [39].

Our approach uses a decomposition based on a dependency graph wherever a “monolithic” system

model is provided. A similar approach has been applied in the context of �owpipe construction

through a similar decomposition [15]. A similar decomposition has also been used for stability

analysis [43] and computing di�erential invariants [38]. If, however, the system is already provided

as a composition of blocks, a decomposition can be avoided. Dragomir et al. provide a compositional

semantics of Simulink block diagrams through a composition of “transformers” that have a similar

�avor of the relational abstractions proposed here [22]. Whereas Dragomir et al. use a simple

Euler scheme for integrator blocks, the purpose of this paper is to provide a sound mathematical

abstraction for ODEs. Furthermore, Dragomir et al. use the ISABELLE theorem prover to handle

properties of nonlinear functions arising from ODEs, whereas this paper uses Taylor models to

abstract such functions through linear relations. The compositional construction of abstractions

has also been considered in other approaches [29, 41]. However, the latter approaches rely on

properties of the components such as input-to-state stability to enable a composition.

7 CONCLUSION
We have thus presented a relational abstraction approach for nonlinear systems that is compositional,

using e�cient SAT/SMT-based veri�cation techniques for analyzing the resulting abstraction. Our

experimental evaluation shows promising results, proving properties that the tool Flow* fails

to establish. Our future work will explore the trade o� between the precision of the relational

abstraction and the computational cost of the veri�cation procedure.

Acknowledgment. This work was supported in part by the US National Science Foundation (NSF)

under award number CPS-1446900 and the Air Force Research Laboratory (AFRL). All opinions

expressed are those of the authors and not necessarily of the NSF or AFRL.

REFERENCES
[1] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivancic, and A. Gupta. 2013. Probabilistic Temporal Logic Falsi�cation

of Cyber-Physical Systems. Trans. on Embedded Computing Systems (TECS) 12, 2s (2013), 95:1–95:30.

[2] M. Altho�. 2015. An Introduction to CORA 2015. In Proc. of ARCH’15 (EPiC Series in Computer Science), Vol. 34.

EasyChair, 120–151.

[3] R. Alur, T. Dang, and F. Ivancic. 2003. Counter-Example Guided Predicate Abstraction of Hybrid Systems. In Proc. of
TACAS’03 (LNCS), Vol. 2619. Springer, 208–223.

[4] R. Alur, T. Dang, and F. Ivancic. 2003. Progress on Reachability Analysis of Hybrid Systems Using Predicate Abstraction.

In Proceedings of the 6th InternationalWorkshop on Hybrid Systems: Computation and Control (HSCC’03) (LNCS), Vol. 2623.

Springer, 4–19.

[5] C. Baier and J.-P. Katoen. 2008. Principles of Model Checking. MIT Press.

[6] M. Berz. 1999. Modern Map Methods in Particle Beam Physics. Advances in Imaging and Electron Physics, Vol. 108.

Academic Press.

[7] M. Berz and K. Makino. 1998. Veri�ed Integration of ODEs and Flows Using Di�erential Algebraic Methods on

High-Order Taylor Models. Reliable Computing 4 (1998), 361–369. Issue 4.

[8] A. R. Bradley. 2011. SAT-based Model Checking Without Unrolling. In Proc. VMCAI’11 (Lecture Notes in Computer
Science), Vol. 6538. Springer-Verlag, 70–87.

[9] F. Cameron, G. Fainekos, D. M. Maahs, and S. Sankaranarayanan. 2015. Towards a Veri�ed Arti�cial Pancreas:

Challenges and Solutions for Runtime Veri�cation. In Proc. of RV’15 (LNCS), Vol. 9333. 3–17.

[10] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri, and S. Tonetta. 2014. The

nuXmv Symbolic Model Checker. In CAV (Lecture Notes in Computer Science), Vol. 8559. 334–342.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

0:18 Xin Chen, Sergio Mover, and Sriram Sankaranarayanan

[11] X. Chen. 2015. Reachability Analysis of Non-Linear Hybrid Systems Using Taylor Models. Ph.D. Dissertation. RWTH

Aachen University.

[12] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2012. Taylor Model Flowpipe Construction for Non-linear Hybrid

Systems. In Proc. of RTSS’12. IEEE Computer Society, 183–192.

[13] X. Chen, E. Ábrahám, and S. Sankaranarayanan. 2013. Flow*: An Analyzer for Non-linear Hybrid Systems. In Proc. of
CAV’13 (LNCS), Vol. 8044. Springer, 258–263.

[14] X. Chen, S. Dutta, and S. Sankaranarayanan. 2017. Formal Veri�cation of a Multi-Basal Insulin Infusion Control Model.

(2017). Cf. http://www.cs.colorado.edu/~srirams/projects/ap-veri�cation-project-page.html.

[15] X. Chen and S. Sankaranarayanan. 2016. Decomposed Reachability Analysis for Nonlinear Systems. In Proc. of the
37th IEEE Real-Time Systems Symposium (RTSS’16). IEEE Computer Society, 13–24.

[16] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. 2015. HyComp: An SMT-Based Model Checker for Hybrid Systems.

In Proc. of TACAS’15 (LNCS), Vol. 9035. Springer, 52–67.

[17] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta. 2016. In�nite-state Invariant Checking with IC3 and Predicate

Abstraction. Form. Methods Syst. Des. 49, 3 (Dec 2016), 190–218.

[18] C. Dalla Man, R. A. Rizza, and C. Cobelli. 2006. Meal simulation model of the glucose-insulin system. IEEE Transactions
on Biomedical Engineering 1, 10 (2006), 1740–1749.

[19] T. Dang, C. Le Guernic, and O. Maler. 2009. Computing Reachable States for Nonlinear Biological Models. In Proc. of
CMSB’09 (LNCS), Vol. 5688. Springer, 126–141.

[20] L. M. de Moura and N. Bjørner. 2008. Z3: An E�cient SMT Solver. In Proc. of TACAS’08 (LNCS), Vol. 4963. Springer,

337–340.

[21] A. Donzé. 2010. Breach: A Toolbox for Veri�cation and Parameter Synthesis of Hybrid Systems. In CAV (Lecture Notes
in Computer Science), Vol. 6174. Springer.

[22] Iulia Dragomir, Viorel Preoteasa, and Stavros Tripakis. 2016. Compositional Semantics and Analysis of Hierarchical

Block Diagrams. In SPIN’16 (Lecture Notes in Computer Science), Vol. 9641. Springer, 38–56.

[23] B. Dutertre and L. de Moura. 2006. The YICES SMT Solver. (2006). Cf. http://yices.csl.sri.com/tool-paper.pdf.

[24] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. 2011. Improving SAT Modulo ODE for Hybrid Systems Analysis

by Combining Di�erent Enclosure Methods. In Proc. of SEFM’11 (LNCS), Vol. 7041. Springer, 172–187.

[25] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. 2007. E�cient Solving of Large Non-linear Arithmetic

Constraint Systems with Complex Boolean Structure. JSAT—Journal on Satis�ability, BooleanModeling and Computation,
Special Issue on SAT/CP Integration 1 (2007), 209–236.

[26] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler. 2011.

SpaceEx: Scalable Veri�cation of Hybrid Systems. In Proc. of CAV’11 (LNCS), Vol. 6806. Springer, 379–395.

[27] S. Gao, S. Kong, and E. M. Clarke. 2013. dReal: An SMT Solver for Nonlinear Theories over the Reals. In Proc. CADE’13
(Lecture Notes in Computer Science), Vol. 7898. Springer, 208–214.

[28] S. Gao, S. Kong, and E. M. Clarke. 2013. Satis�ability Modulo ODEs. In Proceedings of the 13th International Conference
on Formal Methods in Computer-Aided Design (FMCAD’13). IEEE, 105–112.

[29] Z. Huang and S. Mitra. 2014. Proofs from simulations and modular annotations. In Proc. of HSCC’14. ACM, 183–192.

[30] S. Kong, S. Gao, W. Chen, and E. M. Clarke. 2015. dReach: δ -Reachability Analysis for Hybrid Systems. In Proc. of
TACAS’15 (LNCS), Vol. 9035. Springer, 200–205.

[31] C. Le Guernic. 2009. Reachability Analysis of Hybrid Systems with Linear Continuous Dynamics. Ph.D. Dissertation.

Université Joseph Fourier.

[32] K. Makino and M. Berz. 2003. Taylor models and other validated functional inclusion methods. J. Pure and Applied
Mathematics 4, 4 (2003), 379–456.

[33] C. Dalla Man, M. Camilleri, and C. Cobelli. 2006. A System Model of Oral Glucose Absorption: Validation on Gold

Standard Data. Biomedical Engineering, IEEE Transactions on 53, 12 (2006), 2472 –2478.

[34] I. Mitchell and C. Tomlin. 2000. Level Set Methods for Computation in Hybrid Systems.. In Proc. of HSCC’00 (LNCS),
Vol. 1790. Springer, 310–323.

[35] S. Mover, A. Cimatti, A. Tiwari, and S. Tonetta. 2013. Time-aware relational abstractions for hybrid systems. In

EMSOFT’13. 1–10.

[36] M. Neher, K. R. Jackson, and N. S. Nedialkov. 2006. On Taylor Model Based Integration of ODEs. SIAM J. Numer. Anal.
45 (2006), 236–262. Issue 1.

[37] A. Platzer. 2010. Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer.

[38] A. Platzer and E. M. Clarke. 2009. Computing di�erential invariants of hybrid systems as �xedpoints. Formal Methods
in System Design 35, 1 (2009), 98–120.

[39] A. Podelski and S. Wagner. 2007. A Sound and Complete Proof Rule for Region Stability of Hybrid Systems. In Proc. of
HSCC’07 (LNCS), Vol. 4416. Springer, 750–753.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

http://www.cs.colorado.edu/~srirams/projects/ap-verification-project-page.html
http://yices.csl.sri.com/tool-paper.pdf

Compositional Relational Abstraction for Nonlinear Hybrid Systems 0:19

[40] N. Ramdani and N. S. Nedialkov. 2011. Computing Reachable Sets for Uncertain Nonlinear Hybrid Systems using

Interval Constraint-Propagation Techniques. Nonlinear Analysis: Hybrid Systems 5, 2 (2011), 149–162.

[41] M. Rungger and M. Zamani. 2015. Compositional construction of approximate abstractions. In Proc. of HSCC’15. ACM,

68–77.

[42] S. Sankaranarayanan and A. Tiwari. 2011. Relational Abstractions for Continuous and Hybrid Systems. In Proc. of
CAV’11 (LNCS), Vol. 6806. Springer, 686–702.

[43] D. S̆iljak. 1978. Large-scale dynamic systems: stability and structure. North Holland.

[44] R. Testylier and T. Dang. 2013. NLTOOLBOX: A Library for Reachability Computation of Nonlinear Dynamical

Systems. In Proc. of ATVA’13 (LNCS), Vol. 8172. Springer, 469–473.

[45] S Weinzimer, G Steil, K Swan, J Dziura, N Kurtz, and W. Tamborlane. 2008. Fully Automated Closed-Loop Insulin

Delivery Versus Semiautomated Hybrid Control in Pediatric Patients With Type 1 Diabetes Using an Arti�cial Pancreas.

Diabetes Care 31 (2008), 934–939.

[46] A. Zutshi, S. Sankaranarayanan, J. V. Deshmukh, and J. Kapinski. 2013. A Trajectory Splicing Approach to Concretizing

Counterexamples for Hybrid Systems. In IEEE Conf. on Decision and Control (CDC). IEEE Press.

[47] A. Zutshi, S. Sankaranarayanan, and A. Tiwari. 2012. Timed Relational Abstractions for Sampled Data Control Systems.

In Proc. of CAV’12 (LNCS), Vol. 7358. Springer, 343–361.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.

	Abstract
	1 Introduction
	1.1 Motivating Example

	2 Preliminaries
	2.1 Time Triggered Models
	2.2 Relational Abstraction
	2.3 Linear Systems and Relational Abstractions
	2.4 Taylor Model Integration

	3 Adaptive Relational Abstraction
	4 Compositional Relational Abstraction
	4.1 Composing Relations
	4.2 Interface Variable Adaptive Decomposition
	4.3 Composition Into Linear Components

	5 Experiments
	5.1 Benchmarks and Results
	5.2 Discussion

	6 Related Work
	7 Conclusion
	References

