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Abstract. A SAT-based incremental, inductive algorithm for model
checking CTL properties is proposed. As in classic CTL model check-
ing, the parse graph of the property shapes the analysis. However, in the
proposed algorithm, called IICTL, the analysis is directed by task states
that are pushed down the parse tree. To each node is associated over- and
under-approximations to the set of states satisfying that node’s property;
these approximations are refined until a proof that the property does or
does not hold is obtained. Each CTL operator corresponds naturally to
an incremental sub-query: given a task state, an EX node executes a SAT
query; an EU node applies IC3; and an EG node applies FAIR. In each
case, the query result provides more general information than necessary
to satisfy the task. When a query is satisfiable, the returned trace is
generalized using forall-exists reasoning, during which IC3 is applied to
obtain new reachability information that enables greater generalization.
When a query is unsatisfiable, the proof provides the generalization. In
this way, property-directed abstraction is achieved.

1 Introduction

Incremental, inductive verification (IIV) algorithms construct proofs by generat-
ing lemmas based on concrete hypothesis states. Through inductive generaliza-
tion, a lemma typically provides significantly more information than is required
to address the hypotheses. A principle of IIV is that each lemma holds relative
to previously generated lemmas, hence the term incremental, so that the diffi-
culty of lemma generation is fairly uniform throughout execution. In this way,
property-directed abstraction is achieved. The safety model checker IC3 [3, 4]
and the model checker FAIR [6] for analyzing ω-regular properties are both in-
cremental, inductive model checkers. IC3 generates stepwise relatively inductive
clauses in response to states that lead to property violations. FAIR generates
inductive information about reachability and SCC-closed sets in response to sets
of states that together satisfy every fairness constraint. This paper describes an
incremental, inductive model checker, IICTL, for analyzing CTL properties of
finite state systems, possibly with fairness constraints.

An investigation into an IIV model checker for CTL properties is important
for several reasons. First, CTL is a historically significant specification language.
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Second, some properties like resetability (AGEF p in CTL) require branching time
semantics. Third, on properties in the fragment common to CTL and LTL, tra-
ditional CTL algorithms are sometimes superior to traditional LTL algorithms.
CTL model checking is inherently hierarchical in that a CTL property can be
analyzed according to its parse DAG. In the context of IIV, the strategy that
IICTL applies to such properties is different than that applied by FAIR. Finally,
CTL offers a conceptual challenge that previous IIV algorithms, IC3 and FAIR,
do not address: branching time semantics. In particular, CTL motivates gener-
alizing counterexample traces in addition to using proof-based generalization.

IICTL builds on traditional parse DAG-based analyses, except that it eschews
the standard global, or bottom-up, approach in favor of a task-directed strategy.
Beginning with the initial states for the root node, task states—which, as in
previous IIV algorithms, are concrete states of the system—are pushed down
the DAG, directing a node to decide whether those states satisfy its associated
subformula. In the process of making a decision, a node can in turn generate a
set of tasks for its children, and so on. Depending on the root operator of the
node, it applies a SAT solver (EX), a safety model checker such as IC3 (EU),
or a fair cycle finder such as FAIR (EG), to investigate the status of the task
states. Once it reaches a conclusion, it generalizes the witness—either a proof or
a counterexample trace—to provide as much new information as possible.

The first approaches to SAT-based CTL model checking [1, 13] were global
algorithms that leveraged the ability of CNF formulae and Boolean circuits to
be reasonably sized in some cases when BDDs are not. They differ from IICTL,
which is an incremental, local algorithm. McMillan [13] first proposed an efficient
technique for quantifier elimination that is related to the algorithm of Section 3.2,
but is not driven by a trace to be generalized. The idea of creating an unsatisfiable
query to generalize a solution to a satisfiable one (used in (15) and (20) in
Section 3.2) comes from [16] and is present also in [7]. A few attempts [20, 19, 14]
have been made to extend bounded model checking to branching time. They are
all restricted to universal properties, though, and they have not received an
extensive experimental evaluation. Their effectiveness thus remains unclear.

After preliminaries in Section 2, Section 3 describes IICTL in detail. Section
4 presents the results of a prototype implementation of IICTL within the IImc

model checker [11].

2 Preliminaries

A finite-state system is represented as a tuple S : (i, x, I(x), T (x, i, , x′), B) con-
sisting of primary inputs i, state variables x, a propositional formula I(x) describ-
ing the initial configurations of the system, a propositional formula T (x, i, x′)
describing the transition relation, and a set B = {B1(x), . . . , Bℓ(x)} of Büchi
fairness constraints.

Primed state variables x′ represent the next state. A state of the system is
an assignment of Boolean values to all variables x and is described by a cube

over x, which, generally, is a conjunction of literals, each literal a variable or
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its negation. An assignment s to all variables of a formula F either satisfies the
formula, s |= F , or falsifies it, s 6|= F . If s is interpreted as a state and s |= F ,
then s is an F -state. A formula F implies another formula G, written F ⇒ G,
if every satisfying assignment of F satisfies G.

The transition structure is assumed to be complete. That is, every state has
at least one successor on every input: ∀x, i . ∃x′ .(x, i, x′) |= T . A path in S,
s0, s1, s2, . . ., which may be finite or infinite in length, is a sequence of states
such that for each adjacent pair (si, si+1) in the sequence, ∃i.(si, i, s

′

i+1) |= T .
If s0 |= I, then the path is a run of S. A state that appears in some run of the
system is reachable. A path s0, s1, s2, . . . is fair if, for every B ∈ B, infinitely
many si satisfy B, si |= B; if s0 |= I then it is a fair run or computation of S.

Computational Tree Logic (CTL [8, 15]) is a branching-time temporal logic.
Its formulae are inductively defined over a set A of atomic propositions. Every
atomic proposition is a formula. In addition, if ϕ and ψ are CTL formulae, then
so are ¬ϕ, ϕ ∧ ψ, EXϕ, EψUϕ, and EGϕ. Additional operators are defined as
abbreviations. In particular, EFϕ abbreviates E(ϕ ∨ ¬ϕ)Uϕ, AXϕ abbreviates
¬EX¬ϕ, AGϕ abbreviates ¬EF¬ϕ, and AFϕ abbreviates ¬EG¬ϕ. A model of
a CTL formula is a pair M = (S,V) of a finite-state system S and a valuation
V of the atomic propositions as subsets of states of S. Satisfaction of a CTL
formula at state s0 of M is then defined as follows:

M, s0 |= a iff s0 ∈ V(a) for a ∈ A

M, s0 |= ¬ϕ iff M, s0 6|= ϕ

M, s0 |= ϕ ∧ ψ iff M, s0 |= ϕ and M, s0 |= ψ

M, s0 |= EXϕ iff ∃ a fair path s0, s1, . . . of S such that M, s1 |= ϕ

M, s0 |= EGϕ iff ∃ a fair path s0, s1, . . . of S such that for i ≥ 0,M, si |= ϕ

M, s0 |= EψUϕ iff ∃ a fair path s0, s1, . . . of S such that there exists i ≥ 0
for which M, si |= ϕ, and for 0 ≤ j < i, M, sj |= ψ.

Then M |= ϕ if ∀s . s |= I ⇒ M, s |= ϕ. That is, M models formula ϕ if all its
initial states do. In model M , the set of states that satisfy ϕ is written [[ϕ]].

That every CTL formula is interpreted as a set of states makes model checking
easier than for the more expressive CTL∗. Working bottom-up on the parse graph
of ϕ, the standard symbolic CTL model checking algorithm [12] annotates each
node with a set of states. Boolean connectives are dealt with in the obvious way,
while temporal operators are handled with fixpoint computations. The bottom-
up approach is also known as global model checking. In contrast, local model
checking [10, 17, 2, 9] proceeds top-down. A local model checker starts from
the goal of proving that initial state s satisfies ϕ and applies inference rules to
reformulate the goal as a list of subgoals in terms of subformulae of ϕ and states
in the vicinity of s. While local model checking can sometimes prove a property
without examining most of a system’s states, in its basic formulation it does
not play to the strengths of symbolic algorithms. For that reason, local model
checkers for finite-state systems tend to employ explicit search.1

1 Some BDD-based model checkers incorporate elements of local algorithms. For in-
stance, the CTL model checker in VIS [18] uses top-down early termination condi-
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Table 1. Initial bounds for IICTL

ψv Lv Uv

a ∈ A V(a) V(a)
¬ψi ¬Ui ¬Li

ψi ∧ ψj Li ∧ Lj Ui ∧ Uj

ψv Lv Uv

EXψi ⊥ ⊤
Eψj Uψi Li Ui ∨ Uj

EGψi ⊥ Ui

3 Algorithm

The input to IICTL consists of a model M = (S,V) and the parse graph of a
CTL formula ϕ. Each node of the parse graph is a natural number v and is la-
beled with a token from ϕ. Node 0 is the root of the DAG. The formula rooted at
v is denoted by ψv, so that, in particular, ψ0 = ϕ. IICTL annotates each node v
with two propositional formulae over the state variables: Uv and Lv, with which
an upper bound formula Uv and a lower bound formula Lv, discussed later, ap-
proximate the satisfying set [[ψv]] of the formula ψv in M . Initial approximations
are computed as shown in Table 1. A global approximation of the states of S
reachable from the initial states is maintained as inductive propositional formula
R. Initially, R = ⊤; that is, all states are presumed reachable.

Throughout execution, IICTL maintains the following invariant:

[[R ∧ Uv ∧ Lv]] ⊆ [[R ∧ ψv]] ⊆ [[R ∧ Uv]] . (1)

All states of the left set definitely satisfy ψv; all states not in the right set
definitely do not satisfy ψv or are unreachable. A state s of the system S such
that s |= R∧Uv but s 6|= R∧Uv ∧Lv—together, s |= R∧Uv ∧¬Lv—is undecided
for ψv. The algorithm incrementally refines the approximations by considering
undecided states until either no initial state of S is undecided for ϕ, proving
M |= ϕ, or an initial state ŝ is found such that ŝ 6|= U0, proving M 6|= ϕ.

Let Lv = R ∧ Uv ∧ Lv designate the lower bound states: those states that
are known to satisfy ψv. Let Uv = R ∧ Uv designate the upper bounds states:
those states that are not known not to satisfy ψv. Invariant (1) is then written
[[Lv]] ⊆ [[R ∧ ψv]] ⊆ [[Uv]]. Finally, let Av = Uv ∧ ¬Lv = R ∧ Uv ∧ ¬Lv designate
the undecided states of node v.

Section 3.1 describes the essential structure of IICTL in detail. Section 3.2
introduces forall-exists generalization, which is applied to counterexample traces.
Then Section 3.3 describes two important refinements to the basic algorithm,
while Section 3.4 describes the additions for handling fairness constraints.

3.1 An Outline of IICTL

If ever I ∧ ¬U0 becomes satisfiable, then IICTL concludes that M 6|= ϕ: not
even the over-approximation U0 of ϕ contains all I-states, so neither can ϕ

itself. If instead I ∧ ¬(L0 ∧ U0) becomes unsatisfiable, then M |= ϕ: the under-
approximation L0 of ϕ contains all I-states, so ϕ itself must as well.

tions to define conditions that a safe approximation of a set of states must satisfy.
However, it is still fundamentally a bottom-up algorithm.
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Otherwise, one or more initial undecided states must be decided. At the top
level, a witness s to the satisfiability of I ∧ U0 ∧ ¬L0 is undecided; it is decided
by calling the recursive function decide with arguments s and 0, the root of the
parse tree of ϕ, which eventually returns true if M, s |= ϕ and false otherwise. In
general, decide(t, v) return true iff M, t |= ψv. A call to decide(t, v) can update
Lv or Uv (or both) so that state t becomes decided for ψv; moreover, the call
can trigger a cascade of recursive calls that update the bounds of descendants
of v and, crucially, may decide many states besides t. Within the tree, the over-
approximating reachability set R becomes relevant: a state t is undecided at
node v if it satisfies Av. The pseudocode for decide listed in Figure 1 provides
structure to the following discussion.

Boolean Nodes. According to Table 1, no state can be undecided for a propo-
sitional node because the initial approximations are exact; therefore, in the case
that v is a propositional node, one of the conditions of lines 2–3 holds.

If ψv = ψu ∧ ψw, the following invariant is maintained:

Uv = Uu ∧ Uw and Lv = Lu ∧ Lw . (2)

If t is undecided at entry, then recurring on nodes u and w decides t for v (line
6). The update statement (line 5; also lines 7, 20, and 32) indicates that Lv and
Uv should be updated whenever a child’s bound is updated during recursion. It
does not express an invariant.

If ψv = ¬ψu, the following invariant is maintained:

Uv = ¬(Lu ∧ Uu) and Lv = ¬Uu . (3)

If t is undecided at entry, then recurring on node u decides t for v (line 8).

EX Nodes. If ψv = EXψu, then the undecided question is whether t has a
successor satisfying ψu. IICTL executes two SAT queries in order to answer this
question. First, it executes an upper bound query. Naively, this query is t∧T ∧U ′

u,
which asks whether t has a Uu-successor. However, for better generalization, the
following is used instead (line 10):

t ∧ Uv ∧ T ∧ U ′

u . (4)

If unsatisfiable, the core reveals cube t̄ ⊆ t such that all t̄-states (including t) lack
Uu-successors (and thus ψu-successors) or are unreachable. Uv is then updated
to Uv ∧ ¬t̄ (line 11)—no t̄-state is a ψu-state (or it is an unreachable ψu-state).

However, if query (4) is satisfiable, the witness reveals successor Uu-state s
(line 13). A lower bound query is executed next (line 14):

t ∧ T ∧ L′

u ∧ U ′

u . (5)

If satisfiable, then t itself has been decided: it definitely has a ψu-successor, since
it has a (Uu ∧ Lu)-successor (recall invariant (1)). Forall-exists generalization
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1boo l d e c i d e (t : s t a t e , v : node ) :
2i f t |= R ∧ Uv ∧ Lv : return true { a l r eady dec ided : M, t |= ψv}
3i f t 6|= R ∧ Uv : return fa l se { a l r eady dec ided : M, t 6|= ψv}
4match ψv with :
5ψu ∧ ψw : [update Lv , Uv := Lu ∧ Lw , Uu ∧ Uw ]
6return de c i d e (t , u) ∧ de c i d e (t , w )
7¬ψu : [update Lv , Uv := ¬Uu , ¬(Lu ∧ Uu) ]
8return ¬de c i d e (t , u)
9EXψu :
10i f t ∧ Uv ∧ T ∧ U ′

u i s unsat : {with t̄ ⊆ t from core }
11Uv := Uv ∧ ¬t̄
12return fa l se

13else : {with t−succe s so r s}
14i f t ∧ T ∧ L′

u ∧ U ′

u i s sat :
15Lv := Lv ∨ g e n e r a l i z e (t)
16return true

17else :
18de c i d e (s , u)
19return de c i d e (t , v )
20Eψu Uψw : [update Lv , Uv := Lv ∨ Lw , Uv ∧ (Uu ∨ Uw) ]
21i f ¬(t ∧ Uw i s sat or reach(S, Uu ∧ Uv ∧R ∧ U ′

v, t, Uw)) :
22Uv := Uv ∧ ¬P {with proo f P }
23return fa l se

24else : {with t race s0 = t, s1, . . . , sn}
25i f t ∧ Lw i s sat or reach(S, Lu ∧ Uv ∧ U ′

v, t, Lv ∧ Uv) :
26Lv := Lv ∨ g e n e r a l i z e ( r̄ ) {with t race r̄}
27return true

28e l i f de c i d e (si , u ) , 0 ≤ i < n , and de c i d e (sn , w ) are true :
29Lv := Lv ∨ g e n e r a l i z e (s0, . . . , sn )
30return true

31else : return de c i d e (t , v )
32EGψu : [update Uv := Uv ∧ Uu ]
33i f ¬fair(S, Uv ∧R ∧ U ′

v, t) : {with a s s e r t i o n P }
34Uv := Uv ∧ ¬P
35return fa l se

36else : {with t race s0 = t, . . . , sk, . . . , sn, sk}
37i f fair(S, Lu ∧ Uv ∧R ∧ L′

u ∧ U ′

v, t) : {with t race r̄}
38Lv := Lv ∨ g e n e r a l i z e ( r̄ )
39return true

40e l i f de c i d e (si , u ) , 0 ≤ i ≤ n , are true :
41Lv := Lv ∨ g e n e r a l i z e (s0, . . . , sn )
42return true

43else : return de c i d e (t , v )

Fig. 1. Basic version of the main recursive function

(Section 3.2) then produces a cube t̄ ⊆ t of states that definitely have ψu-
successors (or are unreachable), and Lv is updated to Lv ∨ t̄ (line 15). If the
query is unsatisfiable (line 17), then apparently state s is undecided for u. In
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this case, decide(s, u) is called (line 18), which results in updates to at least one
of Uu and Lu, which is a form of progress. The entire process iterates until t is
decided (line 19).

EU Nodes. An EU-node maintains the following invariant:

[[Lw]] ⊆ [[Lv]] , [[Lv]] ⊆ [[Lu]] ∪ [[Lw]] , [[Uw]] ⊆ [[Uv]] , [[Uv]] ⊆ [[Uu]] ∪ [[Uw]] . (6)

If ψv = Eψu Uψw, then the undecided question is whether t has a ψu-path
to a ψw-state. To answer this question, it executes two reachability queries using
an engine capable of returning counterexample traces and inductive proofs, such
as IC3 [3, 4]. Let reach(S,C, F,G) be a function that accepts a system S, a set
of constraints C(x, x′) on the transition relation, an initial condition F , and a
target G; and that returns either a counterexample run from an F -state to a
G-state, or an assertion P (x), inductive relative to C, separating F from G.

The upper bound query asks whether t leads to a Uw-state (line 21). First,
the query t ∧ Uw determines if t is itself a Uw-state. If not, then the following
query determines if it can reach a Uw-state via a Uu-path:

reach(S, Uu ∧ Uv ∧R ∧ U ′

v, t, Uw) . (7)

The transition relation constraint Uu∧Uv∧R∧U ′

v mixes the necessary (Uu) with
the optimizing (Uv∧R∧U ′

v). If the query is unsatisfiable, the returned inductive
proof P shows that no Uw-state can be reached via a potentially reachable Uu ∧
Uv-path, deciding at least t and informing the update of Uv to Uv ∧ ¬P (line
22). If either of the query t ∧ Uw or query (7) is satisfiable, let s0 = t, s1, . . . , sn
be the returned counterexample trace (line 24).

Lower bound queries are executed next (line 25). First, decide asks if t is itself
a ψw-state via the query t ∧ Lw. If not, it asks whether t can reach a known
ψv-state via a known ψu-path:

reach(S, Lu ∧ Uv ∧ U
′

v, t, Lv ∧ Uv) . (8)

In this version, the target set has those states that are known to have ψu-paths
to ψw-states. If either case is satisfiable, t is decided for v: it has a ψu-path to
a ψw-state. Forall-exists generalization (Section 3.2) produces a set of states F ,
including t, that definitely have ψu-paths to ψw-states or are unreachable, with
which Lv is updated (line 26).

However, if the query is unsatisfiable, then attention returns to the trace
s0, . . . , sn of the upper bound query (7) to decide whether its states satisfy the
appropriate subformulae (lines 28–31). Each si, 0 ≤ i < n, is queried for node
u, and sn is queried for node w. If all states of the trace2 are decided positively
(line 28), then t is decided positively for v; therefore, Lv is expanded by the
generalization of the trace (line 29). If one of the states is decided negatively,
the upper and lower bound queries are iterated until t is decided (line 31): either
a trace is found, or the nonexistence of such a trace is proved.

2 Section 3.3 refines this state-by-state treatment to the level of traces.
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EG Nodes. An EG-node maintains the following invariant:

[[Lv]] ⊆ [[Lu]] and [[Uv]] ⊆ [[Uu]] . (9)

If ψv = EGψu, then the undecided question is whether there exists a reach-
able fair cycle all of whose states are ψu-states. To answer this question, it
executes two fair cycle queries using an engine capable of returning (1) fair
cycles and (2) inductive reachability information describing states that lack a
reachable fair cycle. FAIR is one such engine [6]. Let fair(S,C, F ) be a function
that accepts a system S, possibly with fairness constraints {B1, . . . , Bℓ}, a set
of constraints C(x, x′) on the transition relation, and an initial condition F ; and
that returns either an F -reachable fair cycle, or an inductive assertion P , where
F ⇒ P , describing a set of states that lack reachable fair cycles.

The upper bound query asks whether a reachable fair cycle whose states
satisfy Uu exists. The constraint on the transition relation uses Uv because states
of a counterexample should potentially be EGψu states (line 33):

fair(S, Uv ∧R ∧ U ′

v, t) . (10)

If the query is unsatisfiable, the returned inductive assertion P describes states,
including t, that do not have reachable fair cycles (line 33); hence, Uv is updated
to Uv ∧ ¬P (line 34). Otherwise, a reachable fair cycle s0 = t, . . . , sk, . . . , sn, sk
is obtained (line 36).

Before exploring the trace, a lower bound query is executed (line 37) to de-
termine whether a reachable fair Lu-cycle exists3:

fair(S, Lu ∧ L′

u, t) . (11)

If it is satisfiable, the resulting run is generalized (Section 3.2) to a formula F ,
and Lv is updated to Lv ∨ F (line 38).

Otherwise, the reachable fair cycle from query (10) is considered (line 40). If
all si are ψu-states, decide finishes as with a satisfiable lower bound query (lines
41–42). Otherwise, the exploration updates Uv, so that some progress is made,
and the process is iterated (line 43).

Even if generalize were to return what it is given, the sound updates to Lv

(lines 15, 26, 29, 38, 41) and Uv (lines 11, 22, 34), combined with the progress
guaranteed by each call to decide, make the basic version of IICTL correct.

Theorem 1. IICTL terminates and returns true iff M |= ϕ.

Example 1. Consider resetability, ϕ = AGEF p = ¬EF¬EF p, whose parse
graph, with initial upper and lower bounds is shown in Figure 2. Because initial
states are undecided for 0, IICTL chooses some initial state s and calls decide(s,
0), which in turn calls decide(s, 1). To determine if s is a ψ1-state, decide queries
a safety model checker for the existence of a path from s to U2, i.e., to a ¬p-state.

3 Note that the fair cycle query could potentially be avoided by asking if known ψv-
states are reachable from t via a ψu-path: reach(S, Lu ∧ L′

u, t, Lv).
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Fig. 2. AGEF p

If none exist, inductive proof P is returned, and U1 is updated
by ¬P . If counterexample trace s, . . . , t is found, decide asks
whether a path from s to L2 exists, which is currently impos-
sible. The disagreement between U2 and L2 on t triggers calls
to decide(t, 2) and decide(t, 3). With equal bounds for node
4, only one reachability query is needed. If t cannot reach p

(case 1), the inductive proof eliminates t from U3 and adds it
to L2. Then s can reach a ψ2-state, deciding s for 1 positively,
and s, . . . , t are added to L1. Finally, s is removed from node
0, indicating failure of the property.

Otherwise (case 2), the discovered trace at node 3 is gener-
alized to F , included in L3, and eliminated from U2. Then the
upper bound reachability query of node 1 is repeated asking
for the existence of a path from s to a ¬p∧¬F -state. The pro-
cedure continues until either case 1 occurs (failure), or until
this query fails, establishing at least that s |= ψ0. Then decide

is invoked again for node 1 with a remaining undecided initial
state if any exist, or success of the property is declared.

3.2 Forall-Exists Generalization

Proofs from upper bound queries provide generalization in one direction: unsat-
isfiable cores for EX-nodes, inductive unreachability proofs for EU-nodes, and
inductive reachability information from fair cycle queries for EG-nodes. While
there are some techniques that IICTL applies to improve inductive proofs—proof
strengthening, weakening, and shrinking—they have been discussed in the con-
text of FAIR [6]. An essential aspect of making IICTL work in practice is the
ability to generalize from counterexample traces. A first approach, given trace
s0, i0, s1, i1, . . . , sn−1, in−1, sn with interleaved states and primary input values,
is to use the unsatisfiable cores of the query sj ∧ ij ∧T ∧¬s′j+1 to reduce sj to a
subcube, with decreasing j [16, 7]. For greater generalization power, forall-exists
generalization is introduced in this section. While the overall idea is similar for
the three operators EX, EU, and EG, details differ.

The overall idea of forall-exists trace generalization is to (1) select a cube c of
the trace, (2) flip a literal of c to obtain c̄, and (3) decide whether all Av∧c̄-states
are ψv-states. If they are, c can be replaced with the resolvent of c and c̄, that
is, the cube obtained by dropping the literal of step (2). This process continues
until no further literal of the trace can be dropped. During generalization, it
is assumed that all states described by the current trace are Lv-states, so that
an improvement of one cube can lead to improvements of other cubes. Hence,
literals can be tried multiple times.

Selecting the cube (step (1)) and one of its literals (step (2)) can be heuris-
tically guided. The following describes step (3) of the procedure, where c̄ is a
candidate cube obtained by flipping a literal of a cube from the current trace.
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EX Nodes. Let ψv = EXψu, and let c̄ be a cube describing a set of states. If

∀x . c̄(x) ∧ Av(x) → ∃i, x′ . T (x, i, x′) ∧ Lu(x
′) , (12)

then c̄ can be added to Lv while maintaining invariant (1).
The challenge with (12) is quantifier alternation. Rather than using a gen-

eral QBF solver, IICTL adopts a strategy in which two queries are executed
iteratively. The first SAT query is the following:

c̄ ∧ Av ∧ T ∧ ¬L′

u . (13)

It asks whether all successors of c̄-states are Lu states. If the query is unsatis-
fiable, then no undecided c̄-state has a successor outside of Lu. The states in
c̄ ∧ ¬Av can be added freely to Lv. Those in c̄ ∧ Av have all their successors in
Lu; hence, they satisfy ψv and can be added to Lv by updating it to Lv ∨ c̄.

If, however, query (13) is satisfiable, then there exists an undecided c̄-state
s with at least one successor outside of Lu. The second SAT query establishes
whether all of s’s successors are ¬Lu-states:

s ∧ T ∧ L′

u . (14)

If the query is satisfiable, then there exists s-successor state t and input j such
that t |= Lu and (s, j, t′) |= T . In this case, the following query is unsatisfiable:

s ∧ Av ∧ j ∧ T ∧ ¬L′

u . (15)

The set of literals s that do not appear in the unsatisfiable core can be dropped
from s to obtain cube s̄, which describes the set of states that either are not in
Av or go to Lu under input j; these states can therefore be added to Lv, yielding
Lv ∨ s̄. While query (15) is unsatisfiable even without the conjunction of Av, the
presence of Av allows generalizations of s that include ¬Av-states.

If query (14) is unsatisfiable, s is considered a counterexample to generaliza-

tion (CTG). It explains why c̄ cannot be added to Lv at this time: it is known
that s lacks an Lu-successor and thus undecided whether s has a ψu-successor.
Hence, s remains undecided for v. However, all is not lost: the question remains
whether s is even reachable. Because generalization is unnecessary for correct-
ness but necessary for (practical) completeness, answering this question requires
balancing computational costs against the potential benefits of greater general-
ization. There are three reasonable approaches to addressing the question: (1)
ignore it, obtaining immediate speed at the cost of generalization; (2) apply a
semi-decision procedure for reachability, such as the MIC procedure of FSIS and
IC3 [5, 4]; (3) apply a full reachability procedure such as IC3. In the latter two
cases, proofs of unreachability refine R, which strengthens all IICTL queries, in
addition to making s irrelevant to the current generalization attempt.

With approach (3), even in the case that IC3 finds that s is reachable, the
truly inductive clauses generated during the analysis are added to R, yielding
new information. Furthermore, s is added to a set of states known to be reach-
able. Henceforth, whenever a cube c̄ is considered as part of generalization at
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some node v, s ∈ c̄ is first tested; if so, then query (14) is immediately applied.
If this query is satisfiable, then s is marked as henceforth irrelevant for gener-
alizations at node v. This reuse of known reachable states during generalization
significantly mitigates the cost of approach (3) on some benchmarks.

EU and EG Nodes. Let node v be such that either ψv = Eψu Uψw or ψv =
EGψu. In both cases, the generalization queries are motivated by the following:

∀x . c̄(x) ∧ Av(x) → Lu(x) ∧ ∃i, x′ . T (x, i, x′) ∧ Lv(x
′) . (16)

Any (c̄∧Av)-state must be a ψu-state, motivating the Lu(x) term.4 Additionally,
it must have a ψv-successor, motivating the Lv(x) term.

To address (16) without a QBF solver, several queries are executed iteratively.
First, ¬ψu-states are addressed with the following query:

c̄ ∧ Av ∧ ¬Lu . (17)

If satisfiable, the indicated CTG can be analyzed for reachability. A reachable
CTG ends consideration of c̄. Once query (17) becomes unsatisfiable, focus turns
to the existence of ψv-successors for all relevant c̄-states:

c̄ ∧ Av ∧ T ∧ ¬L′

v . (18)

If unsatisfiable, Lv is updated to Lv ∨ c̄, and generalization is complete.
Otherwise, a witness state s exists; it is checked for Lv-successors:

s ∧ T ∧ L′

v . (19)

If the query is satisfiable, then there exists s-successor state t and input j such
that t |= Lv and (s, j, t′) |= T . In this case, the following query is unsatisfiable:

s ∧ Av ∧ j ∧ T ∧ (¬Lu ∨ ¬L′

v) . (20)

Its unsatisfiable core reveals a cube s̄ ⊆ s with which to update Lv to Lv ∨ s̄,
which eliminates s as a counterexample to query (18). If query (19) is unsatisfi-
able, then s is a CTG to be handled as described for EX nodes.

3.3 Refinements

Two refinements are immediate. First, to detect early termination, each time
some node u’s Lu or Uu is updated, its parent v is notified, and the proper
update is made to its Lv and Uv, as explained in Section 3.1. If there is a
(semantic) change in at least one of Lv and Uv, then the upward propagation
continues. If the root node is modified so that a termination criterion is met
(I ∧ ¬U0 is satisfiable or I ∧ ¬L0 is unsatisfiable), then the proof is complete.

4 If v is an EU-node, notice that the term Av in the antecedent excludes considering
Lw-states of c̄, for such states are already decided for node v.
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Consider the property of Example 1. If it fails, there is at least one trace leading
from an initial state to a state s that falsifies EF p. The outer EF node would
direct IICTL to find such a trace, after which the upper bound query of the
inner EF-node would return a proof that s cannot reach a p-state. As soon as
the proof is generated, it is evident that the property is false.

Second, in Section 3.1, individual task states are submitted to nodes. How-
ever, multi-state initial conditions and counterexample traces create sets of task
states. While generalization mitigates the cost of handling each state of a task
set individually, even better is to allow nodes to reason about multi-state tasks.
To do so, a node of the DAG receives a task set T with an associated label.
The label All indicates that all states t ∈ T must satisfy ψv, while the label One
indicates that at least one state t ∈ T must satisfy ψv.

Now function decide takes three arguments: decide(T , ℓ, v), where ℓ ∈
{All,One}. Initially, decide(I, All, 0) is called. A general invocation decide(T ,
ℓ, v) immediately returns false if ℓ = All and T ∧¬Uv is satisfiable, or if ℓ = One

and T ∧ Uv is unsatisfiable; and returns true if ℓ = One and T ∧ Lv is satis-
fiable, or if ℓ = All and T ∧ ¬Lv is unsatisfiable. Otherwise, it updates T to
T ∧ Av—that is, the undecided subset of T —and continues.

If v is a ¬-node, then it switches the label and passes the task onto its child.
If v is a ψu∧ψw-node and ℓ = All, then decide(T , All, u) is called. A return value
of false indicates that some state t ∈ T falsifies ψu, so this call returns false as
well. Otherwise, decide(T , All, w) is called and its return value returned.

If ℓ = One, the situation is more interesting: a state t ∈ T must be identified
that satisfies both ψu and ψw. Therefore, decide(T , One, u) is called. A return
value of false indicates that all states of T falsify ψu, so this call returns false,
too. However, a return value of true indicates that at least one state of T satisfies
ψu, and these states are now included in Lu. Therefore, decide(T ∧ Lu, One, w)
is called to see if any of the identified states also satisfies ψw. If so, this call
returns true. If not, then v’s new bounds exclude some states of T , including the
ones that were found to satisfy ψu. T is consequently set to T ∧ Uv ∧ ¬Lu, and
the process is iterated.

If v is an EX-, EU-, or EG-node and ℓ = One, then its queries are executed
iteratively with T ∧ Uv as the source states until either T ∧ Lv is satisfiable,
in which case true is returned, or T ∧ Uv is unsatisfiable, in which case false is
returned. If ℓ = All, then v’s queries are executed iteratively with T ∧ ¬Lv as
the source states until either T ∧ ¬Uv becomes satisfiable, in which case false is
returned, or T ∧ ¬Lv becomes unsatisfiable, in which case true is returned. The
handling of multiple initial states by the reach and fair queries themselves is the
main advantage of the multi-state refinement of decide.

With the handling of multi-state tasks defined, it remains to define how to
create such tasks. Suppose during analysis of node v, where ψv = Eψu Uψw,
decide discovers a trace s0, . . . , sn in which it must be decided whether states
s0, . . . , sn−1 are ψu-states and state sn is a ψw-state. Then decide({s0, . . . , sn−1},
All, u) and decide({sn}, All, w) are called. Similarly, if ψv = EGψu, the states of
a purported fair cycle s0, . . . , sn are decided with decide({s0, . . . , sn}, All, u).
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3.4 Fairness

Fairness in CTL cannot be handled completely within the logic itself. Instead,
model checkers must be able to handle fairness constraints algorithmically when
deciding whether a state satisfies an EG formula, a task that IICTL accomplishes
by passing the constraints to fair. To show that finite paths computed for other
types of formulae can be extended to fair paths, it suffices to show that they end
in states that satisfy EG⊤. Hence, it is customary in BDD-based CTL model
checkers to pre-compute the states that satisfy EG⊤ and constrain the targets
of EU and EX computations to them [12].

IICTL instead tries to decide the fairness of as few states as possible. To that
effect, it computes from the given ϕ a modified formula τ(ϕ) recursively defined
as follows:

τ(p) = p τ(EGϕ) = EG τ(ϕ)

τ(¬ϕ) = ¬τ(ϕ) τ(EXϕ) = EX(τ(ϕ) ∧ ψ)

τ(ϕ1 ∧ ϕ2) = τ(ϕ1) ∧ τ(ϕ2) τ(Eϕ1 Uϕ2) = E τ(ϕ1)U(τ(ϕ2) ∧ ψ) ,

where

– p is an atomic proposition, and
– ψ = ⊤ if ϕ is a positive Boolean combination of EX, EU and EG formulae;
ψ = EG⊤ otherwise.

For example, τ(AGEF(p ∧ ¬q)) = τ(¬EF¬EF(p ∧ ¬q)) = ¬EF(¬EF((p ∧ ¬q) ∧
EG⊤) ∧ EG⊤), while τ(AGAF p) = τ(¬EFEG¬p) = ¬EFEG¬p.

While the definition of τ(ϕ) is closely related to the one implicitly used by
most BDD-based model checkers—the difference is that in the latter, ψ always
equals EG⊤—it minimizes checks for fairness by taking into account that every
path with a fair suffix is fair.

For instance, in the case of AGAF p, IICTL does not check whether any state
satisfies EG⊤ because the states that satisfy EG p are known to be fair. For the
resetability property AGEF(p ∧ ¬q), however, a state that satisfies p ∧ ¬q is not
assumed to satisfy the inner EF node unless it is proved fair.

4 Results

The IICTL algorithm has been implemented in the IImc model checker [11], and
it has been evaluated on a set of 33 models (mostly from [18]) for a total of
363 CTL properties (278 passing and 85 failing). These properties include only
one invariant, since IICTL delegates invariant checking to IC3. No collection of
branching time properties used in real designs similar to that available for safety
properties is available. This experimental evaluation is therefore preliminary.
The experiments have been run on machines with 2.8 GHz Intel Core i7 CPUs
and 9 GB of RAM. A timeout of 300 s was imposed on all runs.
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In this section the performance of IICTL is compared to that of the BDD-
based CTL model checker in VIS-2.3 [18] (with and without preliminary reach-
ability analysis) and, for the properties that can be expressed in LTL, to the
FAIR and IC3 algorithms [4, 6]. The total run times were: 27613 s for IICTL;
32220 and 31555 s for VIS with and without reachability analysis.

Table 2 shows for each of the three CTL algorithms the numbers of timeouts
(TO) and the numbers of properties that could be solved by only one technique
(US). Only the models for which timeouts occurred are listed. While IICTL

Table 2. Timeouts and Unique Solves (nr = no reachability)

model IICTL VIS VIS-nr
TO US TO US TO US

am2901 1 2 1
am2910 3
CAB 9 9 11

checkers 46 6 52 52
cube 1
gcd 2

newnim 4
palu 5

redCAB 5 5 8
rether 1 1 1

model IICTL VIS VIS-nr
TO US TO US TO US

rgraph 1
tarb16 16 16 16
soap 10 10 10
swap 2
vcordic 1 1 1
viper 1 3
vsa16a 2 2 1 1
vsaR 2
vsyst 1 1 1

total 85 23 98 15 102 1

obtains the lowest number of timeouts and the highest number of unique solu-
tions, it is apparent that the three methods have different strengths and thus
are complementary. This point is further brought out by the plots of Figure 3.

The upper row of Figure 3 shows the comparison of IICTL to VIS in the form
of scatterplots. The lower left plot compares IICTL to FAIR and IC3 for 110
properties expressible in both CTL and LTL. IC3 is used for safety properties,
and FAIR is used for the other ones. Finally, the lower right plot compares the
best of IICTL and IC3/FAIR to the best result obtained by VIS, with or without
reachability. Even with the averaging effect of taking the best results between two
methods, there remain significant differences between the incremental, inductive
approach and the one based on BDDs.

The data shown for IICTL were obtained with a medium level of effort in
trace generalization (option (2) in Section 3.2). This approach proved the most
robust and time-effective, though occasionally, the highest level of effort pays
off. This is more likely to be the case when precise reachability information is
crucial (e.g., with rether, which has very few reachable states).

The comparison of IICTL to the automata-based approach that uses IC3 or
FAIR as decision procedure shows that IICTL is close in performance to tech-
niques that are specialized for one type of property. There are three properties
for which IICTL times out but IC3 does not. (They are all safety properties.)
IICTL gets mired in difficult global reachability queries, because the current
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Fig. 3. Comparing IICTL to competing techniques

implementation does not know that the set of target states will eventually prove
empty. On the the other hand, since the properties are easily strengthened to
inductive, IC3 terminates quickly. These comparisons highlight areas in which
progress should be made by making IICTL’s strategy more flexible and nuanced.

5 Conclusion

Building on the ideas of incremental, inductive verification (IIV) pioneered in IC3
and FAIR, IICTL is a new property-directed abstracting model checker for CTL
with fairness. Although the implementation is preliminary, the experimental re-
sults show that it is competitive in robustness and, importantly, complementary
to the traditional symbolic BDD-based algorithm. IICTL offers a different ap-
proach to model checking that allows it to prove some properties on systems
for which, like checkers, BDDs are unwieldy. The techniques for handling CTL
properties in an IIV style—the task-based algorithm structured around the parse



16 Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi

graph of the CTL property, and forall-exists generalization of traces—will con-
tribute to the next goal for IIV: CTL∗ model checking.
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