
Mining Framework Usage Graphs from App
Corpora

Sergio Mover, Sriram Sankaranarayanan, Rhys Braginton Pettee Olsen, Bor-Yuh Evan Chang
University of Colorado Boulder, USA

Abstract—We investigate the problem of mining graph-
based usage patterns for large, object-oriented frameworks like
Android—revisiting previous approaches based on graph-based
object usage models (groums). Groums are a promising approach
to represent usage patterns for object-oriented libraries because
they simultaneously describe control flow and data dependencies
between methods of multiple interacting object types. However,
this expressivity comes at a cost: mining groums requires solving
a subgraph isomorphism problem that is well known to be
expensive. This cost limits the applicability of groum mining to
large API frameworks.

In this paper, we employ groum mining to learn usage patterns
for object-oriented frameworks from program corpora. The
central challenge is to scale groum mining so that it is sensitive
to usages horizontally across programs from arbitrarily many
developers (as opposed to simply usages vertically within the
program of a single developer). To address this challenge, we
develop a novel groum mining algorithm that scales on a large
corpus of programs. We first use frequent itemset mining to
restrict the search for groums to smaller subsets of methods in
the given corpus. Then, we pose the subgraph isomorphism as
a SAT problem and apply efficient pre-processing algorithms
to rule out fruitless comparisons ahead of time. Finally, we
identify containment relationships between clusters of groums
to characterize popular usage patterns in the corpus (as well
as classify less popular patterns as possible anomalies). We find
that our approach scales on a corpus of over five hundred open
source Android applications, effectively mining obligatory and
best-practice usage patterns.

I. INTRODUCTION

We consider the problem of mining graph-based descrip-
tions of application programming interface (API) usage pat-
terns from large software repositories. Such usage patterns are
invaluable in understanding how the API is typically used by
developers and help highlight anomalous usage. This work
can in turn lead to automatic approaches to detecting potential
defects, automatic code completion, and automatic repair. The
API usage mining problem has been well-studied in the past
two decades with numerous proposed approaches (e.g., [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]).
The work continues, as each approach has an expressivity
versus efficiency tradeoff. As the API usage patterns get more
expressive, the problem of capturing common patterns from
large repositories becomes ever harder. The ideal usage pattern
describes (a) the control flow of the various methods called,
including control structures such as branches and loops; and
(b) the data flow between how an object created by one method
call gets utilized in another call. Commonly used APIs such
as Android involve a large collection of methods and API

usage protocols, each involving multiple object types as well
as constraints on both the control and data flows.

Graph-based models of API usage are therefore very natural
for such applications. A previous work [15] considered the
problem of mining program-specific usage patterns using
GRaph-based Object Usage Models (groums), an abstracted
control-flow graph with data dependency edges. In a groum,
nodes represent API calls (or control structures) and edges
represent data dependencies or control flow between the nodes.

While groums are a natural and promising representation for
expressing API usage, the main unsolved challenge in applying
groum mining for finding framework usage patterns is to effi-
ciently scale on a large corpora of Android applications (apps).
Efficiently mining groums from a large corpus is challenging
because of the cost of computing subgraph isomorphisms, the
basic operation used to compute graph patterns. To illustrate
this challenge, we tried to run the GrouMiner tool [15] on
over five hundred Android projects with over 70,000 methods
downloaded from GitHub. While this was never the intended
application of GrouMiner, this approach also did not produce
results despite our running it over 3 days.

To address this challenge, we make the following contribu-
tions:
• We combine frequent itemset mining with groum mining

to restrict the search for relevant groums to smaller subsets
of API methods (Section II). At a high level, we first use the
mined itemsets as a basis for partitioning the entire corpus of
groums into smaller clusters.
• We use a SAT-based encoding, coupled with filtering

techniques to avoid unnecessary solver calls (Section IV), for
computing subgraph isomorphisms, the main operation used
to construct the lattice-ordered bins of groums.
• We organize the groums of each sub-corpus defined by a

itemset cluster into lattice-ordered bins of groums (logroums),
using containment-based subsumption relation to define the
order of the lattice. Groum bins can then be labeled as POPU-
LAR, ANOMALOUS, or ISOLATED usage patterns (Section V)
according to their frequency of occurrence in the corpus and
the ordering relationship with other bins. Using the mined
itemsets, we then further slice the graphs according to the
items (API calls), to compute subgraph isomorphisms on
smaller instances.
• We evaluate our approach, BIGGROUM, on a corpus

consisting of over five hundred Android apps (Section VI).
We first show that BIGGROUM is efficient, being able to mine
the patterns for the entire corpus of apps, and that our con-

Corpus Groums
(1)

Itemset #1 Itemset #2 Itemset #k

(2) (2) (2)

Logroum #1

POPULAR

ANOMALOUS

Logroum #2 Logroum #k

ISOLATED

(3) (3) (3)

Fig. 1: Overview of the BIGGROUM approach: (1) compile
a groum from each app method in the corpus; (2) cluster
the groums using frequent itemsets; (3.a) bin the isomorphic
groums and order them with the embedding relation (�) in
a logroum; (3.b) label each bin in the logroum using the
frequency of occurrence of groums in each bin and the order
relation. The graphs in the picture represents a lattice, where
each node is a “bin” and each edge represents the embedding
relation �. White/green/red/yellow colored bins represent un-
labeled/POPULAR/ANOMALOUS/ISOLATED patterns.

tributions, the itemset computation, the lattice-based mining
and our subgraph isomorphism computation, are necessary to
scale on such large corpora. Then, we show that BIGGROUM
is effective, by evaluating the precision and recall of the
mined patterns. From sampling 15 clusters (out of a total
of 194 clusters), we find that 87% of the popular patterns
correspond to obligatory or best-practice usage patterns, and
none correspond to untrue patterns. Then, out of 15 known
Android usage patterns, we can find 11 of them as popular
patterns. We also compare BIGGROUM with the GrouMiner
tool, in terms of the efficiency and the inferred patterns.
Approach At a Glance: Figure 1 shows a flow diagram of the
BIGGROUM approach. BIGGROUM takes as input a corpus of
apps that use a common set of APIs. Whereas the approach can
generalize to other objected-oriented APIs, we will focus our
attention on the Android APIs. Note that the approach directly
mines app-code (i.e., the code that uses the APIs), while the
Android framework itself is not an input of the algorithm.
Each app in the corpus consists of multiple classes, and in
turn, each class consists of multiple app methods.

(1) BIGGROUM compiles each method in the corpus into
a groum (i.e., the approach is intra-procedural), a graph
that represents the control flow and data dependencies of
the method, sliced and “abstracted” with respect to the API
method calls: a groum only contains nodes that represent the
API method calls, the control structure of the method and the
program variables used in the method calls.

(2) The corpus of groums is clustered by using frequent
itemset mining in order to perform the pattern computation on
subsets of the entire corpus. Frequent itemset mining computes

the set of API method calls (itemsets) where the number of
groums (i.e., app defined methods) containing all API method
calls of the itemsets exceeds some threshold fl. The corpus of
groums can then be clustered based on the computed frequent
itemsets. Each itemset selects the groums that share at least
some number Kl of API method calls.

(3) BIGGROUM then mines the patterns from each cluster
of groums. (3.a) The groums in each cluster first binned
according to the embedding relation �, computed amongst
each pair of groums in the cluster (isomorphic groums belong
to the same bin, and a bin is subsumed by another bin if the
groums that it contains are embedded in the groums of the
other bin). (3.b) The bins in the lattice are labeled POPULAR
if the number of groums in the bin exceeds some threshold
f ; ANOMALOUS and ISOLATED labels are applied to bins
below some threshold L subject to a relation with popular bins
(formally defined in Section V). The output of BIGGROUM
are the isomorphic groums in the labeled bins that represent
POPULAR, ANOMALOUS, or ISOLATED API usage patterns.

A key property of our approach is that we can reify
our labeled bins as groums that potentially explain a usage
pattern. While statistical model-based approaches (e.g., based
on hidden markov model [16] or n-grams [17]) may be used
for predictive tasks like code completion, they do not readily
provide artifacts that could be human interpretable.

II. GROUM MINING

Groums: In this section, we define the groum data structure
that will be used to represent usage patterns, the embedding
relation between two groums and the groum mining problem.

Our definition of groum mostly follows that of Nguyen et
al, with modifications used to ease the presentation of our
approach to mining groums [15]. An API signature is defined
by a set of object types O = {o1, . . . , ok} and methods
M = {f1, . . . , fK}. Each method fi is associated with a
method signature that includes (a) tuple of argument types
(oi,1, . . . , oi,j), (b) a return type oi and (c) a receiver type
oi,r. In practice, we may also include additional information
such as the set of exceptions thrown by a method. However,
we will elide these details for simplicity of presentation.

Definition 1 (Groum [15]). A groum is a labeled graph G
with nodes V and edges E ⊆ V × V .

The set of nodes V are partitioned into three types, data
nodes Vd, control nodes Vc and method call nodes Vm:

1) Each data node v ∈ Vd has an associated type τ(v) ∈ O;
2) Each method call node v ∈ Vm is associated with an API

method call fi ∈M ;
3) Each control node v ∈ Vc is associated with a statement

type such as if, for, while and so on.

The set of edges E are partitioned into three types, use-
edges Eu ⊆ Vd× Vm, def-edges Ed ⊆ Vm× Vd, and control-
flow edges Ec ⊆ (Vc ∪ Vm)× (Vc ∪ Vm):

1) Use-edges point from a data node to the method call node
where the particular data type is used;

A: FragmentTransaction

A.replace(B,C)

 A.commit()

B: int

 D.beginTransaction()

C: ItemDetailFragment

E: ItemDetailActivity

E.getSupportFragmentManager()

D: FragmentManager

Fig. 2: Groum showing the usage of the Android’s object
FragmentTransaction. The dashed oval nodes represent
data nodes. The boxes show method nodes with corresponding
API calls. The use edges are shown in green whereas the def
edges are shown in blue. Control flow edges are shown in
black, while transitive edges are not shown for readability.

2) Def-edges point from a method call node to a data node
whenever the return value of the associated API method
is assigned to the data node pointed to;

3) Control-flow edges relate each method call or control
node to the locations that the control may visit next.

We will refer to the transitive closure of control flow edges
as the relation Et such that (s, t) ∈ Et if either (s, t) ∈ Ec,
or (u, t) ∈ Ec and (s, u) ∈ Et (i.e., there is a control flow
path from s to t). While we do not represent explicitly in a
groum G the edges defined by Et (i.e. Et 6⊆ E), we will use
them and refer to them as transitive edges. Figure 2 shows an
example of a groum.

Definition 2 (Embeddings). Given two groums G1 : (V1, E1)
and G2 : (V2, E2), we say that G1 is embedded into G2,
written G1 � G2 iff there exists a mapping π : G1 7→ G2

that maps nodes v ∈ V1 to π(v) ∈ V2 and edges e ∈ E1 to
π(e) ∈ E2 such that the following conditions hold:

1) π is one to one but not necessarily onto. In other words,
every node v ∈ V1 is mapped to a unique node in π(v) ∈
V2 and every edge in e ∈ E1 is mapped to a unique edge
π(e) ∈ E2. However, there may be unmapped nodes in
V2 and unmapped edges in E2.

2) π preserves the type of the nodes: it maps data nodes to
data nodes and so on. Furthermore,
• For each data node v, π(v) has the same object type.
• For each method node v, π(v) is associated with the

same API method call as v.
• For each control node v, π(v) has the same control

label.
3) π maps def-edges to def-edges, and use-edges to use-

edges.
4) For control edges π maps a control-flow edge e ∈ E1,c

to a transitive edge π(e) ∈ E2,t.

A : FragmentManager

A.beginTransaction()

B : FragmentTransaction

B.commit()

W .getSupportFragmentManager()

X : FragmentManager

X .beginTransaction()

X .addToBackStack()

Y : FragmentTransaction

Y .commit()

π

π

π

π

π

Fig. 3: Example of an embedding between groums: the left
groum is embedded in the right groum. The black, dot-
ted arrow in the right groum is a transitive control edge
(for clarity we do not show other transitive control edges).
Each node of the smaller groum is mapped onto a node
of the larger one, the mapping is shown with black dashed
arrows labeled with π. In the figure we do not show the
mapping on the edges, apart the one from a control edge
(the edge from node A.beginTransaction() to node
B.commit()) to a transitive edge (the edge from node
X.beginTransaction() to node Y.commit()), show-
ing that control flow edges can map onto transitive edges.

5) If π(s1, t1) = (s2, t2) for edges (s1, t1) ∈ E1 and
(s2, t2) ∈ E2, we have π(s1) = s2 and π(t1) = t2.

Two graphs G1 and G2 are isomorphic written G1 ≡ G2,
iff G1 � G2 and G2 � G1.

Figure 3 shows the embedding between the groum on the
left side and the groum on the right side.

The problem of deciding if G1 � G2 is NP-complete, and
thus reducible to solving a SAT problem [18]. However, due
to the power of modern SAT solvers, and the presence of
helpful labels on the graphs, we present a SAT encoding that
is effective on groums with hundreds of nodes and edges. The
problem of checking if G1 � G2 is presented in Section IV.

Definition 3 (Groum mining problem). Stated in its simplest
form, the problem of mining groums takes as an input a corpus
C : {H1, . . . ,HNg

} of Ng groums, where Ng is assumed to be
a large number, and a frequency threshold f . The output of the
mining problem is the set of all the groums P : {G1, . . . , Gm}
such that for each Gi, |{Hj | Gi � Hj}| ≥ f (i.e., an element
in P is a groum that is embedded in at least f groums).

Similarly, the approach also identifies anomalous members
of the corpus that contain API usage patterns incompatible
with the popular patterns in P (see Section V).

III. GROUM CLUSTERING WITH FREQUENT ITEMSETS

Frequent itemsets are a popular approach in data min-
ing [19] to collect a set of items that occur together in more
than fl records, wherein fl is a threshold set by the user. Many
approaches to mining API usages have utilized this technique

in the past. Here, we briefly summarize what frequent itemsets
are, and how they serve to cluster a given corpus of groums
into smaller subsets, which can be mined more efficiently.

Let C be a corpus of groums over an API with methods
M . With each Hi ∈ C, we identify a record m(Hi) ⊆ M
as the set of API methods calls that occur in Hi. In other
words, m(Hi) simply collects the set of methods called,
without representing the number of calls or the control
flow between them. The groum in Fig. 2 has the item-
set with the methods {getSupportFragmentManager,
beginTransaction, replace, commit}.

Definition 4 (Itemsets and Frequencies). An itemset I ⊆ M
is a subset of API methods. Its frequency #(I) is defined as
the number of groums Hj in the corpus C that contain all the
methods in the itemset: #(I) := |{Hj ∈ C | I ⊆ m(Hj)}|.

Definition 5 (Frequent Itemset Mining problem). The frequent
itemset mining problem takes as input a corpus C, an API with
set of methods M , and a frequency threshold fl, and computes
the set of all frequent itemsets I1, . . . , Ik, such that #(Ij) ≥ fl
for each itemset Ij in the list.

The problem of mining frequent itemsets has been very well
studied with efficient algorithms that scale for large corpora.
(e.g., see the the original work [19]). We use frequent itemset
to cluster co-occurring sets of groums from the corpus.

Definition 6 (Clusters). A groum Hi ∈ C belongs to the cluster
defined by a frequent itemset Ij iff Hi has Kl or more methods
in common with Ij , wherein Kl is a fixed threshold parameter.

IV. COMPUTING EMBEDDINGS

SAT Encoding: Given two groums G1, G2, we seek to check
if G1 is embedded into G2 (G1 � G2) as defined in Def. 2.
This forms a core primitive of our overall approach.

Let G1 : (V1, E1) and G2 : (V2, E2) be the two graphs.
We wish to check if G1 � G2. Furthermore, we partition the
vertices and edges as in Def. 1. For convenience, we compute
the transitive closure of the control edges E2,t of G2.

We introduce a series of Boolean variables p(v1, v2) for
each pair v1 ∈ V1 and v2 ∈ V2, and p(e1, e2) for each pair
of edges e1 ∈ E1 and e2 ∈ E2 ∪ E2,t. A variable p(v1, v2)
(p(e1, e2) encodes that the node v1 (the edge e1) is mapped
to the node v2 (the edge e2). Formally, p(v1, v2) (p(e1, e2) is
true if π(v1) = v2 (π(e1) = e2).

In the following, we now define a propositional logic
formula that is satisfiable iff G1 � G2.
Type Matching: First we note that only nodes of the same type
can be embedded. Let COMPNODES ⊆ V1 × V2 represent all
the compatible nodes, wherein two nodes v1 ∈ V1 and v2 ∈ V2
are compatible iff the following conditions hold:

1) they are of the same node type;
2) if they are method nodes, they have the same API method;
3) if they are object nodes, they have the same object type;
4) if they are control nodes, they have the same control type.

All other nodes are deemed incompatible. To enforce node
compatibility, we define the following formula:

ψ1 :=
∧

(v1,v2) 6∈COMPNODES

¬p(v1, v2)

Likewise, we define the set of compatible edge pairs
COMPEDGES ⊆ E1 × (E2 ∪ E2,t), wherein (e1, e2) ∈
COMPEDGES iff:

1) if e1 is a def edge, then so is e2 (and vice-versa);
2) if e1 is a use edge, then so is e2 (and vice-versa);
3) if e1 is a control edge, then e2 ∈ E2,t (and vice-versa);
4) if e1 : (s1, t1) and e2 : (s2, t2) then (s1, s2) ∈

COMPNODES and (t1, t2) ∈ COMPNODES.
We encode edge compatibility with the formula:

ψ2 :=
∧

(e1,e2) 6∈COMPEDGES

¬p(e1, e2)

One-to-One Mapping: For a set of Boolean variables P :
{p1, . . . , pm}, the formula ONE(P) states that exactly one
of the variables in P is true. It is defined by two formulas
ATLEASTONE(P) and ATMOSTONE(P):

ONE(P) :=

m∨
i=1

pi︸ ︷︷ ︸
ATLEASTONE(P)

∧ ∧
1≤i<j≤m

¬(pi ∧ pj)︸ ︷︷ ︸
ATMOSTONE(P)

We encode that each node in V1 is mapped to exactly one
node in V2:

ψ3 :=
∧

vi∈V1

ONE ({p(vi, vj) | vj ∈ V2})

Likewise, each node in V2 can be mapped to at most one node
in V1:

ψ4 :=
∧

vj∈V2

ATMOSTONE ({p(vi, vj) | vi ∈ V1})

We define similar formulas for edges, where each edge ei ∈
E1 is mapped to an edge in ej ∈ E2 ∪ E2,t:

ψ5 :=
∧

ei∈E1

ONE ({p(ei, ej) | ej ∈ E2 ∪ E2,t})

At most one edge mapped onto each edge ej ∈ E2 ∪ E2,t:

ψ5 :=
∧

ej∈E2∪E2,t

ATMOSTONE ({p(ei, ej) | ei ∈ E1})

Node/Edge Compatibility: We encode that two edges are
mapped only if their nodes are mapped:

ψ6 :=
∧

(e1,e2)∈E2∪E2,t

p(e1, e2) ⇒ (p(s1, s2) ∧ p(t1, t2))

Full SAT Encoding: The overall formula ψ is defined as

ψ := ψ1 ∧ ψ2 ∧ ψ3 · · · ∧ ψ6

Theorem 1. ψ is satisfiable if and only if G1 � G2.

Proof. Proof simply compares the clauses in ψ and Def. 2.

Effective Filtering: Modern SAT solvers can solve large prob-
lems with hundreds of thousands of variables and millions
of clauses. Furthermore, widely available implementations
such as miniSAT have enabled their use in many application
areas [20], [21]. Nevertheless, for large graphs the problem of
checking the satisfiability of the embedding encoding is not
practical. However, there are many optimization that can be
performed to avoid the use of a solver in the first place, and
reduce the size of the encoding. To this end, we design filters
that can check if G1 6� G2. When these checks determines
that G1 6� G2, we can avoid the expensive call to the SAT
solver. Furthermore, these checks allow us to simplify the size
of the SAT problem, by eliminating variables and clauses.

We propose the following filters and simplifications. (a)
Node count: If G1 has more data nodes than G2 then G1 6�
G2. The same considerations hold for control and method
nodes and similarly for edges of various types. Thus, a simple
count of number of nodes and edges of various types can
sometimes eliminate the possibility of an embedding. (b) Node
compatibility: For each node v1 ∈ V1, we compute all com-
patible nodes v2 ∈ V2 such that (v1, v2) ∈ COMPNODES. If
no such nodes v2 can be found for some v1, then we conclude
that G1 6� G2. Furthermore, we do not need to create Boolean
variables corresponding to the pairs (v1, v2) 6∈ COMPNODES.
(c) Edge compatibility: For each edge e1 ∈ E1, we compute
all compatible edges e2 ∈ E2 ∪ E2,t. If no compatible edges
can be found for a given e1, then G1 6� G2, and we avoid
to create the Boolean variable corresponding to the pairs
(e1, e2) 6∈ COMPEDGES.

Thus, a SAT solver need be called only if all the filters above
are unable to rule out an embedding. Furthermore, doing so
also drastically simplifies the SAT encoding in our experience.

V. PATTERN MINING AND CLASSIFICIATION

Overview of the mining and classification algorithm: We mine
groums from a given sub-corpus C defined by an itemset I ,
consisting of groums {H1, . . . ,Hn} that have at least some
number Kl of methods in common with the itemset I .

The process of mining proceeds in three phases:
(1) Slicing: we apply a standard slicing algorithm to each
groum Hi, using the method nodes in the itemset I as
seed. Slicing removes all the method call in Hi that do not
occur frequently. This slicing retains those data nodes that are
defined/used by the itemset seed nodes in Hi, and those control
nodes that are control dependent ancestors of the seed nodes.
Once sliced, we simplify the graph by removing the empty
nodes. Let {G1, . . . , Gn} be the set of sliced groums obtained
from {H1, . . . ,Hn} (i.e., Gi is the groum sliced from Hi).
(2) Binning and lattice construction: We group the groums
{G1, . . . , Gn} into bins of isomorphic graphs. We then build
a lattice between bins based on the embedding relation (�).
(3) Classification: We classify the bins in the lattice as
POPULAR, or ANOMALOUS, or ISOLATED according to their
position in the lattice and the frequency of the bins.
Binning and Lattice Construction: Given a set of groums
{G1, . . . , Gn}, we compute bins that contain sets of isomor-

B8 B9

B5 B10 B6 B7

B1 B2 B3 B4

1015

12111

2
6

12

13

Fig. 4: A logroum: nodes are bins that collect isomorphic
groums; edges show the subsumption relation between bins:
an edge from the bin Bi to the bin Bj means that Gi � Gj ,
where Gi and Gj are groums contained in Bi and Bj

respectively. Transitive edges are not shown for readabil-
ity. The figure shows the cardinality of each bin in red,
and the colors of the nodes represent the classification of
the bin: green/red/yellow/white nodes are respectively popu-
lar/anomalous/isolated/unclassified patterns.

phic groums. Each bin Bi ⊆ {G1, . . . , Gn} collects graphs
that are isomorphic to each other. Additionally, graphs in two
different bins are not isomorphic. For each bin Bj , we choose
any graph Gj ∈ Bj as its representative.

The groums binning procedure iterates through all the sliced
groums {G1, . . . , Gn}. Given a groum Gi, the algorithm:
) Compares Gi with the bin representative Gj for each bin Bj

created so far (initially, there are no bins).) If Gi is isomorphic
to the representative graph Gj of the bin Bj , then Gi is added
to Bj . Note that the isomorphic check is performed by the SAT
solver by checking if Gi � Gj and Gj � Gi.) Otherwise, if
Gi is not isomorphic to any existing bin, it forms a new bin
on its own. The process terminates when there are no more
graphs left to bin, partitioning all the graphs into a set of bins
{B1, . . . , Bl}. |Bi| is the cardinality of a bin Bi.

Next we build a logroum, a lattice structure where the lattice
elements are the bins themselves and two bins Bi and Bj ,
with representative groums Gi and Gj respectively, are such
that Bi � Bj iff Gi � Gj . We use the SAT-based encoding
presented in the previous section to check if Gi � Gj . Figure 4
illustrates a logroum as a directed acyclic graph, showing the
cardinality |Bi| for each bin Bi.
Classifying Bins: We then classify the bins in the logroum as
POPULAR, ANOMALOUS and ISOLATED. The representative
element of a classified bin will then represent a pattern. Our
classification scheme uses the exact same principles as the
original scheme proposed by Nguyen et al in GrouMiner [15].
However, we use the lattice to formalize our classification.

The classification uses two user provided parameters. f is
the minimum desired frequency for a POPULAR patterns. L
is the maximum desired frequency for an ANOMALOUS or
ISOLATED pattern. We assume L < f .

We classify the bins into three categories: (a) POPULAR:
patterns that are embedded in at least f groums in the corpus;
(b) ANOMALOUS: patterns that are strictly embedded in a
POPULAR pattern, but are matched infrequently by at most
L other groums in the corpus; (c) ISOLATED: patterns that are

not embedded in a popular pattern and infrequent, matching
at most L other patterns in the current corpus.

For each bin Bi, its cardinality is written |Bi| and its
frequency is defined as #(Bi) :

∑
Bi�Bj

|Bj |. In lattice
terms, the frequency of a bin sums up its own cardinality
and that of every bin that is connected to it (for example, in
Fig. 4, we calculate #(B1) = |B1| + |B5| + |B8| = 19 and
#(B10) = |B10|+ |B8| = 27).

Definition 7 (Popular, Anomalous and Isolated). A bin Bj in
the lattice is POPULAR iff #(Bj) ≥ f and furthermore, for
every bin Bk such that Bj � Bk we have #(Bk) < f . In other
words, no bin “above” Bj in the lattice is popular. A bin Bk

in the lattice is ANOMALOUS if |Bk| ≤ L and furthermore,
it is embedded in a POPULAR bin. A bin Bl in the lattice is
ISOLATED if |Bk| ≤ L and furthermore, it is not embedded
in a POPULAR bin or does not embed a popular bin.

Note that some of the bins may not end up being classi-
fied into any of the categories mentioned above: we remain
indifferent to such bins given the frequency cutoffs chosen.

As an example, we classify the bin of Fig. 4 using f = 20
and L = 4: the bins B10, B6, and B7 are POPULAR. For
instance, #(B7) = 22 ≥ f , and furthermore, it is connected
to B9, which is not popular. Likewise, B2 is ANOMALOUS.
For instance, the cardinality |B2| ≤ L and furthermore, B2 is
connected to the popular nodes B6 and B10. Likewise, B1, B4

and B5 are ISOLATED. Since their cardinalities are below L
and they are neither embedded in nor embed a popular bin.

We motivate our choice of POPULAR, ANOMALOUS and
ISOLATED patterns. Let us consider a popular and correct
usage pattern P and a simplistic “bug model” that mutates a
groum applying the following operations, which are commonly
seen as the cause of object oriented API misuses [22].

1) Inserting an additional method in the groum. An instance
of this is the “double free” bug, wherein resources are
released twice in some code path.

2) Deleting a method in the groum. This mutation is a
common source of bugs in many APIs. For instance,
forgetting to release a resource.

3) Rearranging the order of methods in the groum. These
mutations are quite common in use-after-free bugs.

4) Multiple mutations (among the three above) can be ap-
plied concurrently to the groum.

Table 5 motivates our inclusion of both ANOMALOUS and
ISOLATED pattern and summarizes the expected effect on the
classification, when applying a specific mutation type on a
groum corresponding to a popular pattern in the corpus.

VI. EXPERIMENTAL EVALUATION

We describe our implementation of the ideas presented
thus far, our research questions and an evaluation to address
them. We then present the results of the evaluation to answer
each specific question and the threats to the validity of the
results. Throughout this section, we refer to the approach
used in this paper as the BIGGROUM, and to the approach of
Nguyen et al [15] as GrouMiner. To validate and reproduce

Mutation Expected Expected effect on the logroum
Type Classification The groum is inserted in a bin
Insertion unlabeled that is subsumed by P
Deletion ANOMALOUS that subsumes P , but is not frequent
Rearranging ISOLATED that subsumes P , but is not frequent
Multiple mutations ISOLATED that subsumes P , but is not frequent

Fig. 5: Expected classification resulting from specific mutation
types of a single groum from a popular pattern.

Performance of BIGGROUM
ID Description
PERF1 Can BIGGROUM scale on a large corpus better than GrouMiner?
PERF2 What is the impact of the SAT-based embedding on the perfor-

mance? Is the filtering necessary to achieve scalability?

Quality of the BIGGROUM patterns
ID Description
COMP Does BIGGROUM find better POPULAR patterns than

GrouMiner?
PREC1 Are the POPULAR patterns mined by BIGGROUM correct?
PREC2 Do the ANOMALOUS and ISOLATED patterns mined by BIG-

GROUM correspond to real bugs?
REC1 Does BIGGROUM mine known Android patterns?
REC2 Does BIGGROUM mine ANOMALOUS and ISOLATED patterns

that correspond to actual bugs to known Android patterns?

Fig. 6: Research questions of the experimental evaluation.

the experiments, we provide all the results of the experimental
evaluation, the corpus of Android apps, and our tools (with
their source code) at the following url https://goo.gl/r1VAgc.

A. Implementation of BIGGROUM

We implement the BIGGROUM approach with different
tools, written in Java, Python and C++. BIGGROUM extracts
a groum for each method of each class of an Android app.
BIGGROUM works directly with Java and Android bytecode
using the Soot frontend for Java [23], [24]. The groums are
sliced to remove statements and control structures irrelevant
to the Android API. BIGGROUM implements the clustering
using frequent itemset mining and the construction of bins, the
lattice and the resulting classification algorithm as described
in Section III and V respectively. The embedding computation
uses the Z3 SMT solver [21] as underlying SAT solver.
BIGGROUM presents the resulting patterns and anomalies as
html pages, to allow a user to examine them.

B. Experimental Evaluation Setup

Research Questions: The main research question we want
to address in the experimental evaluation is: “Can we mine
patterns of usage as groums for a complex framework such as
Android from a heterogeneous, large corpora of apps?”. We
answer this research question with the questions of Fig. 6.

We first ask if BIGGROUM scales better than GrouMiner
when mining a large corpus of groums (PERF1), and the role
of the SAT-based embedding check and the filtering on the
overall performance of BIGGROUM (PERF2).

We then focus on the quality of the patterns mined by
BIGGROUM. The COMP question compares the POPULAR

patterns mined by BIGGROUM and GrouMiner (when it can
compute the patterns), in terms of number and quality (e.g.,
size, frequencies) of the patterns found.

In the PREC1 and PREC2 questions we evaluate the pre-
cision of the mined patterns. We evaluate the precision of
a pattern by assigning it to one of the following categories
(i) OBLIGATORY: are common usage patterns that lead to
serious defects such as crashes or security vulnerabilities
when not respected; (ii) BESTPRACTICES: are common usage
patterns that lead to undesirable user experience when not
respected; (iii) CUSTOMARY: are common usage patterns that
are followed by Android developers to achieve an accepted
user experience (e.g., color schemes, windows with titles,
notifications and so on); and (iv) UNTRUE: are patterns formed
by a purely accidental collocation of methods or weakly
related methods. Intuitively, OBLIGATORY, BESTPRACTICES,
and CUSTOMARY are all “correct” patterns of usage of the
APIs, while UNTRUE patterns are “wrong” patterns of usages.
This classification is more fine grained than the one that
partitions the patterns as “correct” or “wrong”, and further
helps to understand how the mined patterns could be used
in a client (e.g., a bug detector may only use OBLIGATORY
patterns, while code completion may consider all of them).

Finally, questions REC1 and REC2 ask if well documented
patterns in Android can be found by BIGGROUM, and is
evaluated measuring the recall of the approach. Clearly, we
do not know a-priori the patterns represented in our corpus,
or all the existing patterns in Android, and hence we compute
the recall measure on a subset of known reference patterns.
Setup of the Experiments: We consider a corpus of 542
Android open source apps from GitHub. We crawled GitHub
searching for repositories containing Android apps that were
rated with at least 5 stars to bias our corpus towards “good
quality” apps. Since BIGGROUM works on byte-code, we tried
to compile the apps (with the gradlew command), keeping only
the ones that compile, for a total of 542 apps. We extracted
a total of 70000 groums from each declared method of the
542 apps that contained at least one call to an Android API
method.

We obtained the input required by the GrouMiner tool by
slicing the app code in the corpus to produce a java code
containing only the method of interest and the class members
accessed by the method. However, this slicing applied on the
source code does not remove calls to app defined methods.
In Android apps usually the calls to app methods constitute
a small part of a single app, and hence we expected to also
obtain patterns for Android APIs from GrouMiner.

We performed a first experiment where we both run
GrouMiner and the mining algorithm of BIGGROUM (i.e.
BIGGROUM without the clustering phase) on the entire corpus
of groums. After 72 hours of execution, both the approaches
failed to terminate. This result implies that: (i) the original
implementation of GrouMiner [15] cannot scale on the corpus
of 70000 groums; and (ii) the clustering of groums using the
frequent itemset is necessary to scale to large corpora of apps.

All the data presented in the rest of the evaluation is

Fig. 7: The plot each point
compares the times (sec-
onds) for BIGGROUM (y-
axis) and GrouMiner+ (x-
axis) to compute a cluster.
A point is on the dashed
line if the corresponding ap-
proach did not terminate be-
fore the timeout (300 min-
utes). GrouMiner+ timed
out on 11 clusters.

obtained by first computing the clusters using the frequent
itemset computation, and then running the groum mining
algorithm of BIGGROUM and GrouMiner on each cluster
separately. We refer to this configuration of GrouMiner as
GrouMiner+, since it differs from the original approach [15].
We set a timeout of 5 hours for the computation of the patterns
of a single cluster (i.e., for each cluster, we run GrouMiner+

and BIGGROUM for at most 5 hours). In the experiments,
we used the parameters fl=20, f=20, L=5, Kl=2 (i.e., we
create clusters of groums that share 2 or more methods with
the corresponding itemsets) for BIGGROUM. We chose these
values running BIGGROUM on a smaller corpus of groums.

The frequent itemset computation generated 194 clusters in
60 seconds. The largest cluster had 1730 groums with 22% of
the clusters having 100 groums or more. The smallest cluster
had 48 groums. Likewise, the largest itemset had 20 Android
API methods in it, whereas the smallest itemset had 3 methods.

C. Experimental Results - BIGGROUM Performance

Performance Comparison with GrouMiner+ (PERF1): In the
scatter plot shown in Figure 7 we compare the performance of
BIGGROUM and GrouMiner+. Overall, BIGGROUM computed
the frequent subgraphs for all the clusters in 95 minutes,
whereas GrouMiner+ took 413 minutes for 183 out of 194
clusters, timing out for the remaining 11 (the time out is 300
minutes). On average, BIGGROUM computed the patterns for
a cluster in 0.5 minutes, while GrouMiner+ took 2.3 minutes
(the average for GrouMiner+ is only computed for the clusters
where GrouMiner+ did not timed out).

We conclude that BIGGROUM scales better than
GrouMiner+. We conjecture that the bottom up mining
approach of GrouMiner+ must enumerate a large number of
smaller patterns before finding the larger popular patterns,
requiring more computational effort. We note that there
are also some clusters wherein GrouMiner+ computes the
patterns almost immediately (i.e., in less than a second)
and faster than BIGGROUM. However, on these clusters
BIGGROUM always terminates well within the timeout.
SAT Solver Performance (PERF2): We compare the total time
taken by BIGGROUM for the pattern mining and classification
phase with the total time taken by the calls to the SAT solver.
We also compare the total number of � checks and the total
number of checks that had to call the SAT solver:

GROUMiner

Size of the popular patterns

F
re

q
u

e
n

c
ie

s

2 4 6 8 10

0
5

0
1

0
0

1
5

0
GraphIso

Size of the popular patterns

F
re

q
u

e
n

c
ie

s

2 4 6 8 10

0
5

0
1

0
0

1
5

0
Fig. 9: Distribution of popular pattern sizes (number of API
methods) for GrouMiner+ (left) and BIGGROUM (right).

Avg./Max. Total SAT Tot. � � checks
Graph Sizes Time(s) Time (s) Checks Sat solver

186/456 5695 3042 6744259 119250

About 1.77%, a tiny fraction, of the checks had to directly
call the SAT solver. At the same time, however, the total time
taken by the SAT solver for these calls is about 53.4% of the
overall computation time (95 minutes).

D. Experimental Results - Quality of the BIGGROUM Patterns

Pattern Comparison with GrouMiner (COMP): In Fig. 8 we
compare the number and sizes of POPULAR patterns found
by GrouMiner+ against those found by BIGGROUM, while
in Figure 9 we compare the distribution of groum sizes in
terms of number of method nodes. GrouMiner+ finds 85
POPULAR patterns, while BIGGROUM finds 410. On average
BIGGROUM patterns have 4.9 method nodes versus 2.4 API
methods for GrouMiner+. For each GrouMiner+ pattern,
we examine if BIGGROUM can find the same or a more
complete pattern. BIGGROUM finds 72/85 patterns found
by GrouMiner+. We manually examined the remaining 13
patterns to understand why BIGGROUM did not discover them:
(i) 7 patterns involved an API method call that was not part of
a frequent itemset, and thus was sliced away in BIGGROUM
(changing the frequency cutoff for popular patterns could
address these discrepancies); (ii) 2 patterns contained app
specific methods, 2 others contained methods from the Java
(and not Android) APIs, and 2 patterns contained methods
without a precise type signature.

BIGGROUM finds more patterns than GrouMiner+ for the
following reasons: (i) BIGGROUM tracks base types for app
classes that inherit from an Android class, enabling us to com-
pare object types across apps, unlike GrouMiner+; (ii) even
though we slice the GrouMiner+ input, some of the app
specific method calls are left over, nevertheless. These are
sometimes popular enough for the given cutoff frequencies.

POPULAR patterns
Approach Tot. of Min./Avg./Max.

patterns pattern size
BIGGROUM 410 4/4.9/10
GrouMiner+ 85 2/2.4/6

Fig. 8: BIGGROUM vs. GrouMiner+

Precision of the
BIGGROUM Patterns
(PERF1 and PERF2):
To evaluate the
precision of the
approach we
manually inspected

the patterns found by BIGGROUM for 30 (out of the 194)
randomly selected clusters. We first analyze the POPULAR
patterns. We manually assigned the category, OBLIGATORY,
BESTPRACTICES, CUSTOMARY and UNTRUE, to the most
frequent and the least frequent POPULAR pattern in the
clusters (a cluster may contain several POPULAR patterns).
For the OBLIGATORY patterns, we then investigated the other
ISOLATED and ANOMALOUS patterns in those clusters to
check if they were actual defects.

The bar chart in Figure 10a summarizes the outcome of
our manual evaluation for the POPULAR patterns: the first
bar in the plot shows the distribution of the patterns with the
highest frequency, while the second bar shows the distribution
of the patterns with the lowest frequency, both divided in the
4 different categories. The plot shows that the precision of
BIGGROUM does not change if we consider patterns with
different frequency (i.e., the frequency cutoff f is adequate).

In the following, we discuss the results for the most
frequent POPULAR patterns. We found at least one popular
pattern in 29 out of the 30 clusters examined. The cluster
defined by the methods setOnClickListener,setText and
setTextColor failed to have any popular patterns. There is
no prescribed order for the three setter methods involved, and
further, only a subset of these methods may be called. This
yields a large number of possible patterns, none of which
exceed our frequency cutoff to be popular.

We found 8/29 OBLIGATORY patterns, and Figure 10b
shows one of them: the pattern [25] shows the protocol for
opening a database, creating a new value, inserting the value
in the database, and closing the database.

Most of the patterns examined (17/29) are BESTPRAC-
TICES that describe code snippets to accomplish a well de-
fined, specific task. Figure 10c shows an example of a BEST-
PRACTICES pattern to retrieve an Activity toolbar, setting its
title and adding a navigation button back to the app’s home
screen [26]. Clearly, the pattern is used by several apps. A
deviation from this pattern does not necessarily cause a serious
defect, but may presumably lead to a poorer user experience.
4 patterns out of 29 were categorized as CUSTOMARY. In

one of such patterns the android.util.Log.d method is
frequently called with the method (putExtra) used to create
and modify an android.content.Intent object (used for
interprocess communication). It is clear that developers often
insert log messages to help them better debug Intents.

We did not find any POPULAR pattern categorized as
UNTRUE, although an ongoing thorough examination of all
the 410 patterns may provide us such examples.

Next, we manually examined one representative groum
(choosen randomly) for each pattern inside the clusters catego-
rized as ANOMALOUS and ISOLATED, searching for violations
that could be potential bugs.

Category Tot. of patterns Tot. of patterns containing a bug
ANOMALOUS 34 2

ISOLATED 492 21

We see that 6% of the ANOMALOUS and 4% of the ISOLATED
patterns correspond to real bugs in the usage of the APIs. We

Most frequent Least frequent

N
u
m

b
e
r

o
f
p
a
tt
e
rn

s

0

5

10

15

20

25

30

Obligatory

BestPractices

Customary

Untrue

(a)

A: android.database.sqlite.SQLiteDatabase

A.getWritableDatabase()

B: android.database.sqlite.SQLiteDatabase

B.close()

new android.content.ContentValues()

C : android.content.ContentValues

 C.put(D,E)

D : java.lang.String

E : java.lang.Integer

(b)

A : android.support.v7.app.AppCompatActivity

A.getSupportActionBar()

B : android.support.v7.app.ActionBar

B.setDisplayHomeAsUpEnabled(C)

B.setTitle(D) C : int = 1

D : java.lang.CharSequence

(c)

Fig. 10: BIGGROUM precision. (a) Categorization of the most and least POPULAR patterns. (b) An OBLIGATORY protocol for
working with an SQLiteDatabase object in Android. (c) A BESTPRACTICES protocol to set an Activity toolbar.

found several bugs wherein the developer omitted a call to the
close method on a database object in the protocol shown in
Figure 10b [27]. We also encountered several patterns that did
not contain a bug: in almost all these cases the database was
eventually closed by another method in the same class. These
results show a limitation of our current approach. From our
manual inspection, the cause of imprecision of our approach is
caused by the fact that the groums are obtained from a single
method in the app (i.e., the groum extraction is intraprocedu-
ral), and hence does not capture the real execution of an app
(e.g., what methods are invoked before and after). Considering
interprocedural groums is a future research direction.
Recall of the BIGGROUM Patterns (REC1 and REC2): We
evaluated the recall of BIGGROUM by considering 15 known
“reference patterns”. We collected the names of the Android
methods contained in our corpus, we selected a subset of them
randomly, and we then searched for their usages on the An-
droid documentation and StackOverflow. The list of patterns
is reported in Fig. 11, together with their categorization. (we
describe them in detail at the evaluation material’s link).

To evaluate REC1 we first searched for the occurrence of
each reference pattern among the POPULAR patterns discov-
ered by BIGGROUM. Then, we evaluate REC2 by analyzing
the ANOMALOUS and the ISOLATED patterns in the same
clusters where the reference patterns were found to be popular.

Fig. 11 shows the total number of POPULAR patterns that
contains a reference pattern, with their average frequencies,
and the number of ANOMALOUS and ISOLATED patterns
found in the same clusters (of the POPULAR patterns). We
see that BIGGROUM finds at least one POPULAR pattern for
11 out of the 15 reference patterns. However, 4 out of 15
reference patterns did not have any corresponding POPULAR
pattern, since there are few instances of these patterns in the
corpus and hence they did not pass the frequency cutoff to be
labeled as POPULAR. Thus, it seems that we miss 4 reference
patterns becaue we do not have enough data in the dataset
of apps, and not because BIGGROUM does not mine them.
BIGGROUM also finds ANOMALOUS and ISOLATED patterns
discovering possible wrong usages of the reference patterns.

Reference Pattern Cat. POP AN IS
T f T T

1 DB Transaction OBL 1 38 1 0
2 Get/Release Cursor OBL 8 37.6 7 78
3 Fragment Transaction OBL 10 66 2 30
4 Show Toast OBL 19 52 4 99
5 Show/AlertDialog OBL 20 32 21 250
6 Retrieve/Release Parcel OBL 1 29 0 0
7 Create/Send Intent BES 1 26 0 0
8 Retrieve from backstack BES 0 0 0 0
9 Query ContentProvider BES 3 35 0 24
10 Insert ContentProvider data BES 0 0 0 0
11 Update ContentProvider data BES 0 0 0 0
12 Delete ContentProvider data BES 0 0 0 0
13 Build/send notification OBL 3 42.3 0 32
14 Restore Preferences BES 2 38.5 0 12
15 Edit Preferences OBL 5 53 2 81

Fig. 11: BIGGROUM recall. Cat.: category of the pattern (OBL:
OBLIGATORY, BES: BESTPRACTICES) POP: POPULAR, AN:
ANOMALOUS, IS: ISOLATED, T: Total number of patterns
matching the reference pattern, f: Average Frequency.

E. Threats to Validity

The choice of the corpus of apps may affect the performance
and the quality of the results. We minimized the issue by se-
lecting real, good quality apps (i.e., apps with more than 5 stars
on GitHub and that compile). Our evaluation is for Android
and we could have different results for other frameworks.

The experiments’ settings could also affect the results. First,
we observe that GrouMiner was designed to work inside a
single project rather than work across a larger corpus. We
addressed this by slicing the source code to retain parts
relevant to the Android API. Then, we tried to avoid any
selection bias on the BIGGROUM parameters choosing the
parameters on a small corpus of apps before mining the full
corpus and evaluating our technique.

We evaluated the precision on 30/194 randomly chosen
patterns, finding evidence that a vast majority of the BIG-
GROUM’s patterns are OBLIGATORY and BESTPRACTICES.
The number of UNTRUE patterns is highly unlikely to be a
large percentage, given that none were found in our sample.

We did our best to select the reference patterns in an
unbiased way. We recognize that our understanding of the
API usage and some of the online sources may in fact be
erroneous. Two of the paper’s authors collected and validated
the reference patterns, consulting additional documentation
(e.g. StackOverflow posts, the Android source code) and, in the
most uncertain cases, an Android developer. The evaluation of
the patterns was manual and hence, prone to the same threats
to validity. In this case, three of the paper’s authors validated
the results. Finally, the classification of the patterns is not
formal and hence it is open to interpretations.

VII. RELATED WORK

Groum related approaches: Nguyen et al [15] introduce the
groum representation and describe the GrouMiner algorithm
to mine frequent patterns and anomalous API usages from a
dataset of groums. GrouMiner uses an approximate isomor-
phism check that compares sequences of node labesl in each
graph, which is correct in the majority of the cases. Here, we
focus just on the differences in mining groums, assuming that
GrouMiner’s isomorphism check is completely accurate.

GrouMiner’s approach builds groums starting from patterns
of size 1, and then incrementally extends an existing pattern
with a new node and a new edge until any possible extension
of a graph does not result in a pattern that is frequent enough.
This construction is potentially expensive due to large number
of intermediate patterns. Instead, our approach avoids the
bottom-up computation by partitioning the groum dataset with
the frequent itemsets of API method calls. We then build a
precise lattice that describes the groums subsumption relation.
Our algorithm scales better in practice, as shown in our results,
since it avoids the computation of smaller, non interesting
frequent patterns. As GrouMiner, we chose anomalous patterns
that are strictly contained inside a popular pattern, but we
furhter use a lower cutoff L and consider ISOLATED patterns.

Due to their expressiveness, groums have been successfully
used for API repair [28], [29], code completion [16], [30],
[31], [32], and code migration [33]. In particular, most of
these approaches need as pre-requisite the set of frequent API
patterns expressed as groums. BIGGROUM could extends the
applicability of these methods to large framework, as Android.

Recent works [31], [32] produce sequences of API calls
from groums and use the sequences to train Hidden Markov
Models (HMMs) of the API usages. HMMs automate tasks
such as code completion, but are inadequate as documentation
or code repair (e.g. as in the papers [28], [29]), that needs a
model of control flows and data dependencies.
API Mining: According to the survey of Robillard et al [1],
API mining techniques are classified by the kinds of properties
they produce (unordered, sequential and behavioral). We did
not compare experimentally groum with other type of API
specifications. In the following, we discuss the main expressive
differences between groums and other types of specifications.

Several works [2], [3], [4], [5] produce an unordered set
of APIs that is frequently used together by applying frequent
association rule mining. These approaches are efficient, but

their main weakness is that they cannot capture the control
flow (e.g. order of execution of the methods) or data flow in the
mined pattern. We use the same frequent itemset computation,
but just as a pre-processing step to partition the dataset of
groums. Other approaches (e.g. [8], [9], [10], [11], [12])
mine sequences of method calls. Since we focus on groums,
we capture expressive patterns that represent the control flow,
data dependencies and interaction among multiple objects. In
contrast, the previous techniques can only capture sequences
of methods that should be called together. Other techniques
(e.g. [13], [14]) mine patterns that are specific for a single
object, and thus cannot capture the patterns shown in our
experimental evaluation (e.g. such as replacing a Fragment).
The expressiveness of groums increases the cost of mining
the patterns: our approach tackles this problem. Some tech-
niques (e.g. [34], [35]) find behavioral patterns, like the pre-
conditions required to invoke a method. These approaches do
not capture the control and data dependencies. On the other
hand, we do not mine these kinds of invariants.
Tasks solved through API Mining: Several tasks can be solved
by first mining the API usages. Examples of these tasks
are code completion [16], [16], [30], [17], relevant code
search [36], [37], [14], [38], [39] and API repair [28], [29].
In this paper we do not solve these problems, but we provide
a more efficient method to compute groum patterns.
Isomorphism computation via SAT: The reductions of the
graph isomorphism and embeddings problems to SAT have
been explored elsewhere [40], [41], gaining popularity due
to the improvements of SAT solvers in the recent years. Our
encoding solves the isomorphism problem between groums,
where we consider the different kinds of nodes and edges in
the definition of the isomorphism. This allow us to obtain a
simplified encoding, where we discard possible isomorphisms
that do not respect the compatibility of nodes and edges.

VIII. CONCLUSION

In this paper we tackled the problem of finding framework
usage patterns from a large corpora of Android application.

BIGGROUM overcome the scalability issues due to the size
of the app corpus clustering the groums using frequent itemset
mining, and building a lattice that represents the embedding
relationship among groums. Furthermore, we show that simple
filtering techniques reduce the cost of the embedding com-
putation. We presented a detailed experimental evaluation of
BIGGROUM, demonstrating its scalability and the quality of
the mined patterns. Our future work will focus on overcoming
some limitations of the approach, like using interprocedural
analysis, and on code completion and automatic repair.
Acknowledgments: This material is based on research spon-
sored in part by DARPA under agreement number FA8750-14-
2-0263. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

REFERENCES

[1] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated api property inference techniques,” IEEE Trans. Softw. Eng.,
vol. 39, no. 5, pp. 613–637, May 2013.

[2] A. Michail, “Data mining library reuse patterns in user-selected appli-
cations,” in 14th IEEE International Conference on Automated Software
Engineering, Oct 1999, pp. 24–33.

[3] T. Zimmerman, A. Zeller, P. Weissgerber, and S. Diehl, “Mining version
histories to guide software changes,” IEEE Trans. on Software Engg.,
vol. 31, 2005.

[4] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll, “Predicting
source code changes by mining source history,” IEEE Trans. on Software
Engg., vol. 30, no. 9, 2004.

[5] J. Montandon, H. Borges, D. Felix, and M. Valente, “Documenting APIs
with examples: lessons learned with the APIMiner platform,” in Working
Conference on Reverse Engg. (WCRE). IEEE, 2013, pp. 401–408.

[6] H. S. Borges and M. T. Valente, “Mining usage patterns for the android
API,” PeerJ Computer Science, vol. 1, p. e12, 2015.

[7] Y. Lamba, M. Khattar, and A. Sureka, “Pravaaha: Mining android
applications for discovering api call usage patterns and trends,” in
Proceedings of the 8th India Software Engineering Conference, ser.
ISEC ’15. New York, NY, USA: ACM, 2015, pp. 10–19.

[8] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das, “Perracotta:
mining temporal API rules from imperfect traces,” in ICSE, 2006, pp.
282–291.

[9] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in ESEC-FSE, ser. ESEC-FSE ’07. New York, NY, USA:
ACM, 2007, pp. 35–44.

[10] H. Zhong, T. Xie, L. Zhang, J. Pei, and H. Mei, “Mapo: Mining and
recommending api usage patterns,” in ECOOP, ser. Genoa. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 318–343.

[11] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
Helping to navigate the api jungle,” SIGPLAN Not., vol. 40, no. 6, pp.
48–61, Jun. 2005.

[12] S. Sankaranarayanan, S. Chaudhuri, F. Ivancic, and A. Gupta, “Dynamic
inference of likely data preconditions over predicates by tree learning,”
in Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-
24, 2008, 2008, pp. 295–306.

[13] R. Alur, P. Cerný, P. Madhusudan, and W. Nam, “Synthesis of in-
terface specifications for java classes,” in Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2005, Long Beach, California, USA, January 12-14,
2005, 2005, pp. 98–109.

[14] H. Peleg, S. Shoham, E. Yahav, and H. Yang, “Symbolic automata for
static specification mining,” in SAS, 2013, pp. 63–83.

[15] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
ESEC/FSE’09. ACM, 2009, pp. 383–392.

[16] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, A. Tamrawi, H. V. Nguyen,
J. M. Al-Kofahi, and T. N. Nguyen, “Graph-based pattern-oriented,
context-sensitive source code completion,” in ICSE 2012, 2012, pp. 69–
79.

[17] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion with
statistical language models,” in PLDI, 2014, pp. 419–428.

[18] M. R. Garey and D. S. Johnson, Computers and Intractability: A guide
to the theory of NP-Completeness. W.H.Freeman, 1979.

[19] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proc. Very Large Data Bases(VLDB’94), 1994,
pp. 487–499.

[20] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of
Satisfiability, ser. Frontiers in Artificial Intelligence and Applications,
vol. 185. IOS Press, 2009.

[21] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[22] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“Mubench: a benchmark for api-misuse detectors,” in MSR, 2016, pp.
464–467.

[23] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in CASCON’99. IBM
Press, 1999, pp. 13–.

[24] P. Lam, E. Bodden, O. Lhoták, and L. Hendren, “The soot framework for
java program analysis: a retrospective,” cf. https://patricklam.ca/papers/
11.cetus.soot.talk.pdf.

[25] “StackOverflow on getWritableDatabase,”
http://stackoverflow.com/questions/35068292/
do-i-need-call-close-when-i-use-getwritabledatabase, 2017, accessed:
2017-02-01.

[26] “Android documentation on setDisplayAsUpEnabled,” https:
//developer.android.com/training/implementing-navigation/ancestral.
html\#NavigateUp, 2017, accessed: 2017-02-01.

[27] “StackOverflow bug due to missing close on SQLi-
teOpenHelper,” http://stackoverflow.com/questions/4464892/
android-error-close-was-never-explicitly-called-on-database, 2017,
accessed: 2017-02-01.

[28] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen, “A graph-based approach to api usage adaptation,”
SIGPLAN Not., vol. 45, no. 10, pp. 302–321, Oct. 2010.

[29] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N.
Nguyen, “Recurring bug fixes in object-oriented programs,” in Pro-
ceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM,
2010, pp. 315–324.

[30] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in ICSE 2015, 2015, pp. 858–868.

[31] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Learning API
usages from bytecode: a statistical approach,” in ICSE 2016, 2016, pp.
416–427.

[32] ——, “Recommending API usages for mobile apps with hidden markov
model,” in ASE 2015, 2015, pp. 795–800.

[33] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining api usage mappings for code
migration,” in Proceedings of the 29th ACM/IEEE International Con-
ference on Automated Software Engineering, ser. ASE ’14. New York,
NY, USA: ACM, 2014, pp. 457–468.

[34] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant for
esc/java,” in FME, 2001, pp. 500–517.

[35] S. Sankaranarayanan, F. Ivancic, and A. Gupta, “Mining library specifi-
cations using inductive logic programming,” in ICSE, 2008, pp. 131–140.

[36] A. Mishne, S. Shoham, and E. Yahav, “Typestate-based semantic code
search over partial programs,” in OOPSLA, 2012, pp. 997–1016.

[37] H. Peleg, S. Shoham, E. Yahav, and H. Yang, “Symbolic automata for
representing big code,” Acta Inf., vol. 53, no. 4, pp. 327–356, 2016.

[38] S. K. Bajracharya, J. Ossher, and C. V. Lopes, “Sourcerer: An infras-
tructure for large-scale collection and analysis of open-source code,” Sci.
Comput. Program., vol. 79, pp. 241–259, 2014.

[39] R. Holmes, R. J. Walker, and G. C. Murphy, “Strathcona example
recommendation tool,” in ECE-FSE, 2005, pp. 237–240.

[40] I. Olmos, J. A. Gonzalez, and M. Osorio, “Reductions between the sub-
graph isomorphism problem and hamiltonian and sat problems,” in Elec-
tronics, Communications and Computers, 2007. CONIELECOMP’07.
17th International Conference on. IEEE, 2007, pp. 20–20.

[41] B. Das, P. Scharpfenecker, and J. Torán, Succinct Encodings of Graph
Isomorphism. Cham: Springer International Publishing, 2014, pp. 285–
296. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-04921-2
23

