
The Flow-Insensitive Precision of Andersen’s
Analysis in Practice

Sam Blackshear1, Bor-Yuh Evan Chang1, Sriram Sankaranarayanan1, and
Manu Sridharan2

1 University of Colorado Boulder
{samuel.blackshear,evan.chang,sriram.sankaranarayanan}@colorado.edu

2 IBM T.J. Watson Research Center
msridhar@us.ibm.com

Abstract. We present techniques for determining the precision gap be-
tween Andersen’s points-to analysis and precise flow-insensitive points-to
analysis in practice. While previous work has shown that such a gap may
exist, no efficient algorithm for precise flow-insensitive analysis is known,
making measurement of the gap on real-world programs difficult. We give
an algorithm for precise flow-insensitive analysis of programs with finite
memory, based on a novel technique for refining any points-to analysis
with a search for flow-insensitive witnesses. We give a compact sym-
bolic encoding of the technique that enables computing the search using
a tuned SAT solver. We also present extensions of the algorithm that
enable computing lower and upper bounds on the precision gap in the
presence of dynamic memory allocation. In our experimental evaluation
over a suite of small- to medium-sized C programs, we never observed
a precision gap between Andersen’s analysis and the precise analysis.
In other words, Andersen’s analysis computed a precise flow-insensitive
result for all of our benchmarks. Hence, we conclude that while better
algorithms for the precise flow-insensitive analysis are still of theoretical
interest, their practical impact for C programs is likely to be negligible.

1 Introduction

Programming languages such as C and Java make extensive use of pointers. As
a result, many program analysis questions over these languages require pointer
analysis as a primitive to find the set of all memory locations that a given
pointer may address. This problem is of fundamental importance and has been
widely studied using numerous approaches [8]. Recently, Andersen’s analysis [1]
has been increasingly employed to analyze large programs [7, 19]. However, it
is also well known that Andersen’s analysis falls short of being a precise flow-
insensitive analysis [5, 9, 17]. A precise flow-insensitive analysis reports only
the points-to relationships that are realizable via executing some sequence of
program statements, assuming arbitrary control flow between statements. There
are two key reasons for the precision gap between Andersen’s analysis and a
precise flow-insensitive analysis (discussed further in Sect. 2):

SAS 2011.
c©Springer-Verlag Berlin Heidelberg 2011.

– Andersen’s analysis assumes that any set of points-to edges can occur simul-
taneously, whereas program variables must point to a single location at any
program state. This discrepancy may cause Andersen’s to generate spurious
points-to edges.

– Andersen’s analysis transforms pointer assignments to contain at most one
dereference by rewriting complex statements using fresh temporary variables.
However, temporary variables can introduce spurious points-to edges [9].

These observations lead to two tantalizing and long-standing questions:

1. Is there an efficient algorithm for precise flow-insensitive pointer analysis?
2. Does a precision gap exist, in practice, for real-world programs?

Regarding the first question, precise flow-insensitive analysis is NP-hard
for arbitrary finite-memory programs [9], and no polynomial-time algorithm is
known even for programs with only Andersen-style statements [5]. In the pres-
ence of dynamic memory, the decidability of the problem remains unknown [5].

This paper addresses the second question by presenting techniques for com-
puting the precision gap between Andersen’s and precise flow-insensitive points-
to analysis in practice. We introduce an algorithm for computing the precise
flow-insensitive analysis for programs with finite memory. This algorithm re-
fines Andersen’s analysis results by searching for an appropriate sequence of
statements to witness each edge in the points-to graph obtained from Ander-
sen’s analysis. The search is encoded symbolically and carried out using efficient
modern SAT solvers. Although the worst-case performance of our algorithm is
exponential, our SAT encoding enables analysis of medium-sized C programs
within reasonable time/memory bounds. We then extend our techniques to in-
vestigate the precision gap in the presence of dynamic memory.

We performed an experimental evaluation to measure the precision gap be-
tween Andersen’s and precise flow-insensitive analysis on a suite of C programs.
Perhaps surprisingly, we found the results of the two analyses to be identical over
our benchmarks: a precision gap seems to be non-existent, in practice. Thus, we
conclude that better algorithms for precise flow-insensitive points-to analysis,
while retaining theoretical interest, are unlikely to have a large impact on the
analysis of C programs. Instead, our conclusions suggest efforts spent on refin-
ing Andersen’s analysis with flow or context sensitivity may be more fruitful.
Interestingly, our witness search algorithm may offer a basis for such efforts.

This paper makes the following contributions:

– We present an algorithm for precise flow-insensitive analysis for programs
with finite memory based on refining Andersen’s analysis with a witness
search for each computed points-to fact (Sect. 3.1).

– We describe extensions for handling dynamic memory over- and under-ap-
proximately in order to evaluate the precision gap resulting from the lack of
a fully precise treatment of dynamic memory (Sect. 3.2).

– We also give a compact symbolic encoding of the witness search algorithm,
enabling the use of highly-tuned SAT solvers for the search (Sect. 3.3).

– We implemented our algorithms and performed an experimental evaluation,
showing that the precision gap seems non-existent for small- to medium-sized
C programs (Sect. 4).

2 Flow-Insensitive Imprecision in Andersen’s Analysis

In this section, we examine the sources of imprecision in Andersen’s analysis
compared to a precise flow-insensitive points-to analysis. Most of this discussion
is a reformulation of known concepts.

We first define the notion of a precise flow-insensitive points-to analysis. A
(flow-insensitive) points-to analysis problem consists of a finite set of variables
X along with a set of assignments A. The simplest variant considers only finite
memory, that is, each assignment has one of the following forms: ∗dp := &q
or ∗d1p := ∗d2q where p and q are variables. The expression ∗dp denotes the
application of d ≥ 0 dereferences to pointer p, while &q takes the address of
q. Note that ∗0p is the same as p. The dynamic memory points-to analysis
problem adds a statement ∗dp := malloc() for allocation. The goal of a precise
flow-insensitive points-to analysis is to answer queries of the form p 7� q: is
there a sequence of assignments from A that causes p to point to q (i.e., that
causes variable p to contain the address of q)? The problem is flow-insensitive,
as program control flow is ignored to produce a set of assignments as input.

The result of a points-to analysis can be captured as a points-to graph. A
points-to graph G : (V,E) consists of a set of vertices V and directed edges
E. The set of vertices represents memory cells and thus includes the program
variables (i.e., V ⊇ X). To conservatively model constructs like aggregates (e.g.,
arrays or structures), dynamically allocated memory, and local variables in a
recursive context, a vertex may model more than one concrete memory cell
(which is referred to as a summary location). An edge v1 7� v2 says that v1 may
point to v2 (i.e., a concrete cell represented by v1 may contain an address from
v2) under some execution of assignments drawn from A. For convenience, we use
the notation V (G) or E(G) to indicate the vertices and edges of G.

r q b

p a

r q b

p a

∗r := q

An exact abstraction of a concrete
memory configuration can be modeled by
a points-to graph where each vertex repre-
sents a single memory cell and thus each
vertex can have at most one outgoing points-to edge. We call such graphs exact
points-to graphs. A points-to graph obtained as a result of some may points-to
analysis may be viewed as the join of some number of exact points-to graphs.
With exact point-to graphs, we can define the operational semantics of pointer
assignments from a points-to analysis problem. We write G a−→ G′ for the one-
step transition relation that says assignment a transforms exact graph G to
exact graph G′. A formal definition is provided in our companion technical re-
port [3]. The inset figure illustrates the transformation of an exact points-to
graph through an assignment. We can now define realizability of points-to edges.

Definition 1 (Realizable Graphs, Edges, and Subgraphs). A graph G is
realizable iff there exists a sequence of assignments a1, . . . , aN such that G0

a1−→
G1 → · · ·

aN−−→ GN ≡ G where G0 : (X, ∅) is the initial graph of the points-to-
analysis problem with variables X. An edge v1 7� v2 ∈ V × V is realizable iff
there exists a realizable graph G such that v1 7� v2 ∈ E(G). A subset of edges
E ⊆ V ×V is (simultaneously) realizable if there exists a realizable graph G such
that E ⊆ E(G).

A precise flow-insensitive points-to analysis derives all edges that are realiz-
able and no other edges.

Andersen’s analysis [1], well studied in the literature, is an over-approximate
flow-insensitive points-to analysis computable in polynomial time. In essence,
Andersen’s analysis works by deriving a graph with all points-to relations using
the inference rules shown below:

p := &q

p 7� q

p := q q 7� r

p 7� r

p := ∗q q 7� r r 7� s

p 7� s

∗p := q p 7� r q 7� s

r 7� s

where an assignment a (e.g., p := &q) in the rule states that a is in the set of
program assignments A and a points-to edge e (e.g., p 7� q) states that e is in
the derived points-to graph G (i.e., e ∈ E(G)). Observe that Andersen’s analysis
requires that an input problem be transformed so that all statements contain
at most one dereference. This transformation itself may introduce imprecision,
as we shall discuss shortly. Finally, Andersen’s analysis handles dynamic mem-
ory over-approximately by essentially translating each statement p := malloc()
into p := &mi, where mi is a fresh summary location representing all memory
allocated by the statement.

Imprecision: Simultaneous Points-To. Previous work has pointed out that An-
dersen’s is not a precise flow-insensitive points-to analysis [5, 9]. One source of
imprecision in Andersen’s analysis is a lack of reasoning about what points-to
relationships can hold simultaneously in possible statement sequences.

Example 1. Consider the following set of pointer assignments:

{p := ∗r, r := &q, r := ∗x, x := &g1, y := x, ∗x := r, ∗x := y} .

r q x

p g1 y

The inset figure shows the Andersen’s analysis result for
this example (for clarity, graphs with outlined blue nodes
are used for analysis results). Notice that while r 7� g1 and
g1 7� q are individually realizable, they cannot be realized
simultaneously in any statement sequence, as this would
require either: (1) pointer r to point to g1 and q simultaneously; or (2) pointer g1

to point to g1 and q simultaneously (further illustration in Sect. 3.1). Andersen’s
does not consider simultaneous realizability, so with given the statement p := ∗r
and the aforementioned points-to edges, the analysis concludes that p may point
to q (shown dashed in red), when in fact this edge is not realizable. The finite
heap abstraction employed by Andersen’s analysis may lead to conflation of
multiple heap pointers, possibly worsening the simultaneous realizability issue.

Imprecision: Program Transformation. Imprecision may also be introduced due
to the requisite decomposition of statements with multiple dereferences:

Example 2. Consider the following set of pointer assignments: {a := &b, a :=
&c, p := &a, q := &a, ∗∗p := ∗q}. The statement ∗∗p := ∗q may make either
b or c point to itself, but in no statement sequence can it make b point to c (as
shown in the inset below). However, when decomposed for Andersen’s analysis,
the statement is transformed into statements introducing fresh variables t1 and
t2: t1 := ∗p, t2 := ∗q, ∗t1 := t2. Then, the following sequence causes b 7� c:

a := &b; p := &a; t1 := ∗p; a := &c; q := &a; t2 := ∗q; ∗t1 := t2;

p b
a

q c

Hence, the transformation to Andersen’s-style statements
may create additional realizable points-to relationships
among the original variables (i.e., the transformation adds
imprecision even for precise flow-insensitive analysis). The
goal of this work is to determine whether simultaneous realizability or program
transformation issues cause a precision gap, in practice.

3 Precise Analysis via Witness Search

In this section, we present a witness search algorithm that yields a precise flow-
insensitive points-to analysis for the finite-memory problem (Sect. 3.1). Then,
we discuss two extensions to the algorithm that respectively provide over- and
under-approximate handling of dynamic memory allocation and other summa-
rized locations (Sect. 3.2). Finally, we describe a SAT-encoding of the search al-
gorithm that yields a reasonably efficient implementation in practice (Sect. 3.3).

3.1 A Precise Algorithm for Finite Memory

Here, we describe our witness search algorithm, which computes a precise flow-
insensitive analysis for programs with finite memory. Given the result of a conser-
vative flow-insensitive points-to analysis, such as Andersen’s [1], we first create
edge dependency rules that capture ways a points-to edge may arise. These edge
dependency rules are effectively instantiations of the Andersen inference rules.
Next, we search for witness sequences for a given edge, on demand, using the
edge dependency rules while taking into account constraints on simultaneous
realizability. We may find no witness for an edge, in which case we have a refuta-
tion for the realizability of that points-to fact. Essentially, the dependency rules
leverage the Andersen result to constrain a goal-directed search for realizability.

p r s q
Generating Edge Dependency Rules. We first il-
lustrate edge dependency rule construction through an
example. Let G be a points-to graph derived as the re-
sult of a conservative points-to analysis. Consider the assignment a : ∗p := q,
wherein edges p 7� r, q 7� s, and r 7� s exist in G (as illustrated inset). In terms
of realizability, the following claim can be made in this situation:

Edge r 7�s is realizable (using assignment a) if the edge set {p 7� r, q 7� s}
is simultaneously realizable.

Note that the converse of this statement need not be true—the edge r 7� s may
be realizable using another set of edges and/or a different pointer assignment.
In our framework, this assertion is represented by a dependency rule:

r 7� s
a: ∗p:=q←−−−−− {p 7� r, q 7� s}

This dependency rule indicates that the edge r 7� s can be produced as a re-
sult of the assignment a whenever the edges p 7� r and q 7� s can be realized
simultaneously.

The dependency rules can be created by examining a points-to graph G that
results from a conservative analysis. Let us first consider assignments of the form
∗mp := ∗nq. For each such assignment, we generate a set of rules as follows:

– Let paths(p,m) denote the set of all paths of length m starting from p in G,
and let paths(q, n+ 1) be the set of all paths of length n+ 1 starting from q.

– Consider each pair of paths π1 : p m p′ ∈ paths(p,m) and π2 : q n+1 q
′ ∈

paths(q, n+ 1).

– We generate the dependency rule:
(
p′ 7� q′

∗mp:=∗nq←−−−−−− E(π1) ∪ E(π2)
)

where
E(πi) denotes the edges in the path πi for i ∈ {1, 2}.

The case for assignments of the form ∗mp := &q is essentially the same, so we
elide it here. Overall, we obtain the set of rules for a finite-memory problem by
taking all such rules generated from all assignments a ∈ A.

Note that the time taken for rule generation and the number of rules gener-
ated can be shown to be a polynomial in the size of the problem and the number
of edges in the points-to graph (which is in turn at most quadratic in the number
of variables) [3]. The time taken is exponential in the number of dereferences in
the pointer assignments, but usually this number is very small in practice (it is
at most one for Andersen-style statements).

This rule generation can be done offline as described above to take advantage
of an optimized, off-the-shelf points-to analysis, but it can also be performed
online during the execution of Andersen’s analysis. Consider a points-to edge e
discovered in the course of Andersen’s analysis while processing an assignment a.
The edges traversed at this step to produce e are exactly the dependence edges
needed to create an edge dependency rule (as in the rule construction algorithm
described above).

Example 3. Figure 1 shows the edge dependency rules derived from the result
of Andersen’s Analysis for the problem in Example 1.

Witness Enumeration. Once edge dependency rules are generated, witness
search is performed via witness enumeration, which constructs possible partial
witnesses. Consider a rule r : e a←− E. Rule r states that we can realize edge e

r 7� q
r:=&q←−−−− ∅ x 7� g1

x:=&g1←−−−−− ∅ y 7� g1
y:=x←−−− x 7� g1

g1 7� q
∗x:=r←−−−− x 7� g1, r 7� q g1 7� g1

∗x:=r←−−−− x 7� g1, r 7� g1

g1 7� g1
∗x:=y←−−−− x 7� g1, y 7� g1 r 7� g1

r:=∗x←−−−− x 7� g1, g1 7� g1

r 7�q
r:=∗x←−−−− x 7�g1, g1 7�q p 7�g1

p:=∗r←−−−− r 7�g1, g1 7�g1 p 7�q
p:=∗r←−−−− r 7�g1, g1 7�q

Fig. 1. The edge dependency rules for the problem in Example 1.

via assignment a if we can realize the set of edges E simultaneously (i.e., in a
state satisfying E, executing a creates the points-to edge e). Intuitively, we can
realize the set E if we can find a chain of rules realizing each edge in E. Thus,
enumeration proceeds by repeatedly rewriting edge sets based on dependency
rules until reaching the empty set; the statements associated with the rules
employed become the candidate witness (see [3] for a detailed definition).

Example 4. We describe a witness enumeration step for Example 1. Starting
from the set E : {r 7� g1, g1 7� g1} and using the rule r : g1 7� g1

∗x:=y←−−−− {x 7�
g1, y 7� g1}, we can rewrite set E to a set E′ as follows:

E : {r 7� g1, g1 7� g1}
r−⇀ E′ : {x 7� g1, y 7� g1, r 7� g1} .

Often, we will write such transitions using the same format as the rule itself:

E : {r 7� g1, g1 7� g1}
∗x:=y←−−−− E′ : {x 7� g1, y 7� g1, r 7� g1} .

Not all rewriting steps lead to valid witnesses. In essence, we need to ensure
that the witness search respects the concrete semantics of the statements. Recall
the definition of realizability (Definition 1), which states that a set of edges E is
realizable if it is a subset of edges in a realizable graph. A realizable graph must
be an exact points-to graph. Therefore, we simply detect when the exactness
constraint is violated, which we call a conflict set.

Definition 2 (Conflict Set). A set of edges E is a conflict set iff there exist
two or more outgoing edges v 7� v1, v 7� v2 ∈ E for some vertex v.

In addition to conflict detection, we guarantee termination in the finite-
memory problem by stopping cyclic rewriting of edge sets. Intuitively, if we
have E1

r1−⇀ E2
r2−⇀ . . .

rn−⇀ En, wherein En ⊇ E1, the corresponding statements
have simply restored the points-to edges in E1. Hence no progress has been made
toward a complete witness. Since all cyclic rewriting is truncated, and we have a
finite number of possible edge sets (since memory is finite), termination follows.

Performing witness enumeration with conflict set detection for each points-
to fact derived by an initial analysis yields a precise flow-insensitive points-to
analysis as captured by the theorem below. Proofs of all theorems are given in
the appendix of our companion technical report [3].

Theorem 1 (Realizability). (A) An edge e is realizable iff there exists a se-
quence of rewrites w : E0 : {e} r1−⇀ E1

r2−⇀ · · · rN−−⇀ EN : ∅ , such that none of the
sets E0, . . . , EN are conflicting. (B) Furthermore, it is also possible to find w
such that Ei 6⊇ Ej for all i > j.

Example 5. Considering the problem from Example 1, the following sequence of
rule applications demonstrates the realizability of the edge r 7� g1:

{r 7� g1}
r:=∗x←−−−− {x 7� g1, g1 7� g1}

∗x:=y←−−−− {x 7� g1, y 7� g1}
y:=x←−−− {x 7� g1}

x:=&g1←−−−−− ∅ .

The sequence of assignments corresponding to the set of rule applications pro-
vides the witness sequence: x := &g1; y := x; ∗x := y; r := ∗x; .

p 7� q r 7� g1, g1 7� q x 7� g1,g1 7� g1,g1 7� q

r 7� g1, x 7� g1, r 7� q

p := ∗r r := ∗x

∗x := r

X

X

The converse of The-
orem 1 can be applied to
show that a given edge is
not realizable. To do so,
we search over the sequence of applicable rules, stopping our search when a con-
flicting set or a superset of a previously encountered set of edges is encountered.
A refutation tree for the non-realizability of edge p 7�q from Example 1 is shown
inset. In one path, the search terminates with a conflict on g1, and in the other,
the conflict is on r.

Possible Extensions. Looking beyond precise flow-insensitive points-to anal-
ysis, our algorithm can be extended to provide greater precision by introducing
additional validation of the produced witnesses. For example, context sensitiv-
ity could be added by ensuring that each witness respects call-return semantics.
One could add flow or even path sensitivity in a similar manner. This additional
checking could be performed on partial witnesses during the search, possibly
improving performance by reducing the size of the search space. Further study
of these extensions is promising future work.

3.2 Handling Summarized Locations

In practice, problems arising from programming languages such as C will contain
complications such as union types, structure types handled field insensitively, lo-
cal variables in a recursive function, thread local variables, and dynamic memory
allocations. Such constructs are often handled conservatively through summary
locations, which model a (possibly unbounded) collection of concrete memory lo-
cations. As noted in Sect. 2, to conservatively model the potentially unbounded
number of allocated cells with dynamic memory, Andersen’s analysis uses one
summary location per allocation site in the program.

The decidability of the precise flow-insensitive analysis in the presence of dy-
namic memory is unknown [5]. Here, we present two extensions to our algorithm
that respectively handle summary locations in an over- and under-approximate

manner, thereby yielding lower and upper bounds on the precision gap with a
fully precise treatment of dynamic memory and other summarized locations.

Over-Approximating Summaries. To handle summary variables over-approxi-
mately, we can simply augment the search algorithm with weak update semantics
for summaries. In particular, on application of a rule r : e a←− E, if the source
of edge e is a summary location, then e is not replaced in the rewriting (i.e.,
E0

r−⇀ E0∪E for initial edge set E0). Additionally, the definition of a conflict set
(Definition 2) is modified to exclude the case when the conflict is on a summary
location (i.e., two edges v 7� v1 and v 7� v2 where v is a summary location), as a
summary may abstract an unbounded number of concrete cells. This handling
clearly yields an over-approximate handling of summaries, as it is possible for the
algorithm to generate witnesses that are not realizable by Definition 1. Hence,
comparing Andersen’s analysis and this algorithm yields a lower bound on the
precision gap with a fully precise analysis.

Under-Approximating Summaries. To obtain an upper bound on the precision
gap between Andersen’s and the fully precise analysis, we define a straight-
forward under-approximating algorithm—during witness search, we treat sum-
maries as if they were concrete memory locations. In essence, this approximation
looks for witnesses that require only one instance of a summary (e.g., only one
cell from a dynamic memory allocation site). This algorithm is unsound, as a
points-to relation may be realizable even when this algorithm does not find a
witness. However, if this algorithm finds a witness for a points-to relation, that
relation is indeed realizable, and thus this algorithm yields an upper bound on
the precision gap.

3.3 A Symbolic Encoding

In this section, we discuss a symbolic encoding for witness search and proving
unrealizability. The idea is to encode the search for witnesses whose depths are
bounded by some constant k using a Boolean formula ϕ(e, k) such that any
solution leads to a witness for edge e. We then adapt this search to infer the
absence of witnesses by encoding subsumption checks. Crucially, our encoding
allows parallel updates of unrelated pointer edges during witness search so that
longer witnesses can be found at much smaller depths.

Propositions. For each edge e ∈ E and depth i ∈ [1, k+ 1], the Boolean variable
Edg(e, i) denotes the presence of edge e in the set obtained at depth i. Similarly,
for depths i ∈ [1, k], the Boolean variable Rl(r, i) will be used to denote the
application of the rule r at depth i (to obtain the set at depth i+ 1). Note that
there is no rule application at the last step.

Boolean Encoding. Some of the key assertions involved in the Boolean encoding
are summarized in Table 1. The assertion init(e) describes the edge set at depth
1, which is required to be the singleton {e}. Recall that a pair of edges conflict
if they have the same source location (which is not a summary location). The
assertion edgeConflict(eA, eB , i) is used for such conflicting edges. Similarly, we

Table 1. Overview of the boolean encoding for witness search.

Name Definition Remarks

init(e) Edg(e, 1) ∧
V

e′ 6=e ¬Edg(e′, 1) Start from edge set {e}
edgeConflict(eA, eB , i) ¬Edg(eA, i) ∨ ¬Edg(eB , i) Edges eA, eB cannot both be

edges at depth i

ruleConflict(r1, r2, i) ¬Rl(r1, i) ∨ ¬Rl(r2, i) Rules r1, r2 cannot both be si-
multaneously applied at depth i

someRule(i)
W

r∈R Rl(r, i) Some rule applies at depth i

ruleApplicability(r, i) Rl(r, i)⇒ Edg(e, i) Applying rule r : e ←− E at
depth i creates edge e

notSubsumes(i, j) ¬(
V

e∈E Edg(e, i)⇒
Edg(e, j))

Edge set at depth i does not
contain set at depth j

define a notion of a conflict on the rules that enables parallel application of
non-conflicting rules. Rules r1 : e1

a1←− E1 and r2 : e2
a2←− E2 are conflicting

iff one of the following conditions holds: (a) e1 = e2, or (b) e1 conflicts with
some edge in E2, or (c) e2 conflicts with some edge in E1. If two rules r1, r2

are not conflicting, then they may be applied in “parallel” at the same step
and “serialized” arbitrarily, enabling the solver to find much longer witnesses at
shallower depths. The corresponding assertion is ruleConflict(r1, r2, i). Assertion
someRule(i) says some rule applies at depth i, and ruleApplicability(r, i) expresses
the application of a rule r at depth i.

The assertion ruleToEdge(e, i) enforces that a rule r : e←− E is applicable at
depth i only if the corresponding edge e is present at that depth, which we define
as follows (and is not shown in Table 1:

Edg(e, i+ 1)⇔

(
(Edg(e, i) ∧

“V
(r : e←E)∈R ¬ Rl(r, i)

”
) /e existed previously/

∨
W

(r′ : e′←E)∈R s.t. e∈E Rl(r′, i) /or rule r′ creates e/

)
During the witness search, if we encounter an edge set Ei at depth i, such that
Ei ⊇ Ej for a smaller depth j < i, then the search can be stopped along that
branch and a different set of rule applications should be explored. This aspect is
captured by notSubsumes(i, j), and in the overall encoding below, we have such
a clause for all depths i > j.

Overall Encoding. The overall encoding for an edge equery is the conjunction:

ϕ(equery, k) :
∧

i∈[1,k]

init(equery)∧
e1,e2 conflicting edgeConflict(e1, e2, i)∧
r1,r2 conflicting ruleConflict(r1, r2, i)
∧ someRule(i)
∧
∧

r∈R ruleApplicability(r, i)
∧
∧

e∈E ruleToEdge(e, i)
∧
∧

j∈[1,i−1] notSubsumes(i, j)

.

The overall witness search for edge equery, consists of increasing the depth bound
k incrementally until either (A) ϕ(equery, k) is unsatisfiable indicating a proof
of unrealizability of the edge equery, or (B) ϕ(equery, k) ∧ emptySet(k + 1) is
satisfiable yielding a witness, wherein, the clause emptySet(i) :

∧
e∈E ¬Edg(e, i)

encodes an empty set of edges.

Lemma 1. (A) If ϕ(e, k) is unsatisfiable then there cannot exist a witness for
e for any depth l ≥ k; and (B) If ϕ(e, k) ∧ emptySet(k + 1) is satisfiable then
there is a witness for the realizability of the edge e.

4 Is There a Precision Gap in Practice?

We now describe our implementation of the ideas described thus far and the
evaluation of these ideas to determine the size of the precision gap between
Andersen’s analysis and precise flow-insensitive analysis.

Implementation. Our implementation uses the C language front-end CIL [13] to
generate a set of pointer analysis constraints for a given program. The constraint
generator is currently field insensitive. Unions, structures, and dynamic memory
allocation are handled with summary locations. To resolve function pointers,
our constraint generator uses CIL’s built-in Steensgaard analysis [18]. The con-
straints are then analyzed using our own implementation of Andersen’s analysis.
Our implementation uses a semi-naive iteration strategy to handle changes in the
pointer graphs incrementally [14]. Other optimizations such as cycle detection
have not been implemented, since our implementation of Andersen’s analysis is
not the scalability bottleneck for our experiments.

Our implementation of witness generation uses the symbolic witness search
algorithm outlined in Sect. 3.3. Currently, our implementation uses the SMT
solver Yices [6]. Note that the witness search directly handles statements with
multiple dereferences from the original program, so the additional temporaries
generated to run Andersen’s analysis do not introduce imprecision in the search.

Evaluation Methodology. We performed our experiments over a benchmark suite
consisting of 12 small- to medium-sized C benchmarks representing various Linux
system utilities including network utilities, device drivers, a terminal application,
and a system daemon. All measurements were taken on an 2.93 GHz Intel Xeon
X7350 using 3 GB of memory.

To measure the precision gap for points-to analysis, we ran our witness search
for all of the Andersen’s points-to results for the benchmarks, both with over-
and under-approximate handling of summary locations (yielding a lower and
upper bound on the precision gap respectively, as described in Sect. 3.2). The
primary result of this paper is that we found no precision gap between Andersen’s
analysis and the precise flow-insensitive analysis in either of these experimental
configurations. In other words, our witness search never produced a refutation
over our 12 benchmarks, no matter if summary locations were handled over-
or under-approximately, and with precise handling of statements with multiple
dereferences.

Following our observation that no precision gap exists for points-to queries,
it is natural to consider if there is a precision gap between using Andersen’s
analysis to resolve alias queries and a precise flow-insensitive alias analysis. We
say that p aliases q if there is a common location r such that both p and q may
simultaneously point to r. We adapted the witness search encoding to search
for witnesses for aliasing between pairs of variables that Andersen’s analysis
indicated were may-aliased. For aliasing experimental configurations, we ran the
alias witness search for 1000 randomly chosen pairs of variables for each of our
benchmarks (whereas for points-to configurations, we exhaustively performed
witness search on all edges reported by Andersen’s). Even though realizability
of alias relations is more constrained than that of points-to relations, the search
still produced a witness for all alias queries. This observation provides evidence
that there is also likely no precision gap for alias analysis.

Results. As stated above, we found a flow-insensitive witness for every points-to
relation and every alias query for our benchmarks in each experimental configu-
ration. We found refutations for small hand-crafted examples that demonstrate
the precision gap (like Examples 1 and 2), but not in real programs.

Table 2 gives details about the benchmarks and the execution of our witness-
generating analyses. We show the statistics for two experimental configurations:
the over- and under-approximating analyses for points-to queries with search
over the original program statements.

Witness Search with Weak-Update Witnesses (Weak). For each points-
to edge computed by Andersen’s analysis, we performed a symbolic wit-
ness search using edge dependency rules derived with the original program
statements until either a witness or a refutation for the edge was found.
Weak-update semantics were used for summaries (see Sect. 3.2), yielding an
over-approximate analysis and a lower bound on the precision gap.

Witness Search with Concretization (Conc). Here, we performed an un-
der-approximate witness search that treated summaries as concrete loca-
tions, as described in Sect. 3.2. As refutations produced in this configuration
may be invalid (due to the under-approximation), the configuration gives an
upper bound on the precision gap.

The benchmarks are organized by function and sorted by number of lines of code
in ascending order. The first set of columns gives statistics on the problem size,
while the second set shows number of rules, analysis times, and search depths for
each configuration. We note that running time depends primarily on the number
of rules available to the witness search.

In Fig. 2, we show the per-benchmark distribution of discovered witness
lengths for both the Weak configuration (left) and Conc configuration (right).
Comparing each benchmark across the two configurations, we see relatively little
change in the distribution. This result is a bit surprising, as one may expect
that the more constraining Conc configuration would be forced to find longer
witnesses. We hypothesize that the flow-insensitive abstraction allows so much
flexibility in witness generation that there are always many possible witnesses

Table 2. Data from experiments using the Weak and Conc configurations. The “Pro-
gram Size” columns give the number of thousands of lines of code (kloc), variables
(vars), and pointer constraints (cons). Note that the number of variables includes all
program variables (pointer type or non-pointer type), as any type may be used a
pointer in C. The “Problem Size” columns give the number of rules generated (rules)
and number of points-to edges found by Andersen’s (edges). For the Weak and Conc
experiments, we give the average search depth required and total running time.

Program Size Problem Size Weak Conc

Benchmark kloc vars cons rules edges depth time (s) depth time (s)

-network utilities-
aget (ag) 1.1 198 86 21 21 1.4 0.0 1.4 0.0
arp (ar) 3.1 1052 144 31 30 1.5 0.1 1.5 0.0
slattach (sl) 3.4 1046 164 31 31 1.5 0.1 1.5 0.0
netstat (ne) 4.5 1333 205 85 80 1.5 0.1 1.5 0.1
ifconfig (if) 8.8 1334 702 224 195 1.9 0.4 1.9 0.5
plip (pl) 18.4 4298 1556 167 146 2.5 1.0 2.7 1.2

-device drivers-
knot (kn) 1.3 243 125 22 21 1.7 0.0 1.7 0.0
esp (es) 10.9 3805 1475 6979 413 3.9 12937.0 4.2 734.0
ide-disk (id) 12.6 4684 1290 422 274 5.0 42.1 5.1 53.4
synclink (sy) 23.6 5221 2687 164 157 1.2 0.2 1.2 0.2

-terminal applications-
bc (bc) 6.2 658 615 1098 244 3.6 129.7 3.6 124.0

-daemons-
watchdog (wa) 9.4 1189 760 196 163 2.7 1.1 2.7 1.1

for each points-to relation regardless of whether we use the Weak or Conc
configuration. The median witness length for Weak and Conc was 4, while
the mean lengths were 8.41 and 8.58, respectively. Note that the mean lengths
significantly exceeded the mean search depth for the benchmarks, indicating the
effectiveness of parallel rule application in the search (see Sect. 3.3). The longest
witness found in either configuration was of length 54.

4.1 Discussion: Why is There No Precision Gap in Practice?

We note that the phenomena reported here as such defy a straightforward expla-
nation that reflects directly on the way pointers are typically used in C programs.

From our experiments, we observe that not only does every edge discovered
by Andersen’s analysis have a witness, but it potentially has a large number of
witnesses. This hypothesis is evidenced by the fact that we can (a) deploy non-
conflicting rules in parallel and (b) discover long witnesses at a much smaller
search depth. As a result, each witness consists of parallel threads of unrelated

0
10

20
30

40
50

ag ar sl ne if pl kn es id sy bc wa

● ● ● ● ● ● ●

● ●

●

●

●

Witness Lengths for Weak Configuration

Benchmark

W
itn

es
s

Le
ng

th

0
5

10
15

20
25

30
35

40
45

50

0
10

20
30

40
50

ag ar sl ne if pl kn es id sy bc wa

● ● ● ● ● ● ●

● ●

●

●

●

Witness Lengths for Conc Configuration

Benchmark

W
itn

es
s

Le
ng

th

0
5

10
15

20
25

30
35

40
45

50
55

Fig. 2. Distribution of witness lengths for the Weak and Conc configurations. The
white dot shows the median length, the endpoints of the thick line give the first and
last quartiles, and the thin line indicates the first and last deciles. The width of the
plot indicates the (relative) density of witnesses for a given length.

pointer assignments that contribute towards the final goal but can themselves
be interleaved in numerous ways.

Recall that the rules obtained from Andersen’s analysis are of the form
e

a←− {e1, e2}, stating that if e1, e2 are simultaneously realizable then e is realiz-
able by application of assignment a. Therefore, unrealizability of e means that for
every such rule that can realize e, the corresponding RHS set {e1, e2} are simul-
taneously unrealizable. In turn, this indicates that any sequence of assignments
that realizes e1 destroys e2 and vice versa. Such “mutually-destructive” pairs of
points-to relations are easy to create and maintain in programs. However, these
examples depend on sequential control flow to produce the desired behavior.
When analyzed under flow-insensitive semantics wherein statements can occur
multiple times under varying contexts, the behavior changes drastically.

Other examples of imprecisions in points-to analysis depend on the proper
modeling of function calls and returns. For example, the following code may be
used to initialize a linked list:

void initList(List* l) { l->header->next = l->header->prev = l->header; }

If this function were invoked at multiple contexts with different arguments, An-
dersen’s analysis could conflate the internal list pointers while a precise flow-
insensitive analysis would not (assuming a context-insensitive treatment of the
function). However, note that this precision gain would require the ability to
distinguish the list nodes themselves, for which flow-insensitive analysis is often
insufficient. Furthermore, the precision gain would be quite fragile; if the above
source is rewritten to store l->header in a temporary variable, the gain dis-
appears. Stepping out of pure flow-insensitive analysis, a partially-flow-sensitive

analysis [17] would be more robust to such changes and may be worth future
investigation.

4.2 Threats to Validity

One threat to the validity of our results is that they may be sensitive to how
various C language constructs are modeled by our constraint generator. It is
possible that field sensitivity, (partial) context sensitivity, or a more precise
treatment of function pointers would expose a precision gap. However, given the
exacting conditions required for a gap to arise, we believe it is unlikely that these
other axes of precision would affect our results in any significant way.

It is also possible that our benchmarks are not representative of small- to
medium-sized C programs. To mitigate this concern, we chose benchmarks from
several domains: network utilities, device drivers, a command-line application,
and a system daemon. We also attempted to select programs of different sizes
within the spectrum of small- to medium sized programs. Although no bench-
mark suite can be representative of all programs, our intent was to choose a
reasonable number of programs with diverse sizes and uses to comprise a set
that adequately represents small- to medium-sized C programs.

Finally, it may be that the precision gap only manifests itself on larger pro-
grams than the ones we considered. We have tried to perform measurements on
examples in the 25 to 200 kloc range, but such examples are presently beyond
the reach of our implementation. We are currently investigating implementing
ideas along the lines of bootstrapping [10], wherein the witness search may focus
on a smaller subset of edges in the points-to graph and allow our experiments to
scale to larger programs. Despite our inability to scale to programs beyond 25k
lines, we hypothesize that our conclusion generalizes to larger programs based
on the intuitions outlined in Sect. 4.1.

5 Related Work

Our work was partially inspired by previous work on the complexity of pre-
cise points-to analysis variants. Horwitz [9] discussed the precision gap between
Andersen’s analysis and precise flow-insensitive analysis and proved the NP-
hardness of the precise problem. Chakaravarthy [5] gave a polynomial-time algo-
rithm for precise flow-insensitive analysis for programs with well-defined types.

Muth and Debray [12] provide an algorithm for a variant of precise flow-
sensitive points-to analysis (for programs without dynamic memory) that can be
viewed as producing witnesses by enumerating all possible assignment sequences
and storing the exact points-to graph, yielding a proof of PSPACE-completeness.
Others have studied the complexity and decidability of precise flow-sensitive and
partially-flow-sensitive points-to analysis [11, 15, 17].

The edge reduction rules derived in our approach are similar, in spirit, to
the reduction from pointer analysis problems to graph reachability as proposed
by Reps [16]. However, a derivation in this CFL for a points-to edge need not

always yield a witness. In analogy with Andersen’s analysis, the derivation may
ignore conflicts in the intermediate configurations. Finding a derivation in a
CFL without conflicting intermediate configurations reduces to temporal model
checking of push-down systems. This observation, however, does not seem to
yield a better complexity bound [4].

Our work employs SAT solvers to perform a symbolic search for witnesses
to points-to edges. Symbolic pointer analysis using BDDs have been shown to
outperform explicit techniques in some cases by promoting better sharing of
information [2, 19].

6 Conclusion

We have presented techniques for measuring the precision gap between Ander-
sen’s analysis and precise flow-insensitive points-to analysis in practice. Our ap-
proach is based on refinement of points-to analysis results with a witness search
and a symbolic encoding to perform the search with a tuned SAT solver. Our
experimental evaluation showed that for medium-sized C programs, the preci-
sion gap between Andersen’s and precise flow-insensitive analysis is (as far as
we can observe) non-existent. Future work includes improving the scalability of
our witness search algorithm and applying our techniques to other languages.
We also plan to extend the witness search algorithm to incorporate higher levels
of precision, including context sensitivity and some form of flow sensitivity.

Acknowledgments. We thank Jeffrey S. Foster for fruitful discussions on an
earlier draft of this paper, as well as the anonymous reviewers for their helpful
comments. The authors are also grateful to Gogul Balakrishnan, Franjo Ivancic,
and Aarti Gupta at NEC Laboratories America in Princeton, NJ for helping
us with the Linux device driver benchmarks used in our experiments. We also
thank Jan Wen Voung, Ranjit Jhala, and Sorin Lerner for including a large set
of C benchmarks in their publicly available Relay/Radar tool. This research was
supported in part by NSF under grants CCF-0939991 and CCF-1055066.

7 References

[1] L. O. Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, University of Copenhagen, DIKU, 1994.

[2] M. Berndl, O. Lhoták, F. Qian, L. Hendren, and N. Umanee. Points-to
analysis using BDDs. In Programming Language Design and Implementa-
tion (PLDI), pages 103–114, 2003.

[3] S. Blackshear, B.-Y. E. Chang, S. Sankaranarayanan, and M. Sridharan.
The flow-insensitive precision of Andersen’s analysis in practice (extended
version). Technical Report CU-CS-1083-11, Department of Computer Sci-
ence, University of Colorado Boulder, 2011.

[4] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of push-
down automata: Application to model-checking. In Concurrency Theory
(CONCUR), pages 135–150, 1997.

[5] V. T. Chakaravarthy. New results on the computability and complexity of
points-to analysis. In Principles of Programming Languages (POPL), pages
115–125, 2003.

[6] B. Dutertre and L. de Moura. The YICES SMT solver. http://yices.
csl.sri.com/tool-paper.pdf.

[7] B. Hardekopf and C. Lin. The ant and the grasshopper: Fast and accurate
pointer analysis for millions of lines of code. In Programming Language
Design and Implementation (PLDI), pages 290–299, 2007.

[8] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In Program
Analysis for Software Tools and Engineering (PASTE), pages 54–61, 2001.

[9] S. Horwitz. Precise flow-insensitive may-alias analysis is NP-hard. ACM
Trans. Program. Lang. Syst., 19(1), 1997.

[10] V. Kahlon. Bootstrapping: a technique for scalable flow and context-
sensitive pointer alias analysis. In Programming Language Design and Im-
plementation (PLDI), pages 249–259, 2008.

[11] W. Landi. Undecidability of static analysis. ACM Lett. Program. Lang.
Syst., 1(4):323–337, 1992.

[12] R. Muth and S. Debray. On the complexity of flow-sensitive dataflow anal-
yses. In Principles of Programming Languages (POPL), pages 67–80, 2000.

[13] G. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL: Intermediate lan-
guage and tools for analysis and transformation of C programs. In Compiler
Construction (CC), pages 213–228, 2002.

[14] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

[15] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program.
Lang. Syst., 16(5):1467–1471, 1994.

[16] T. Reps. Program analysis via graph reachability. Information and Software
Technology, 40:5–19, 1998.

[17] N. Rinetzky, G. Ramalingam, M. Sagiv, and E. Yahav. On the complexity
of partially-flow-sensitive alias analysis. ACM Trans. Program. Lang. Syst.,
30(3), 2008.

[18] B. Steensgaard. Points-to analysis in almost linear time. In Principles of
Programming Languages (POPL), pages 32–41, 1996.

[19] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In Programming Language Design
and Implementation (PLDI), pages 131–144, 2004.

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

	The Flow-Insensitive Precision of Andersen's Analysis in Practice
	Introduction
	Flow-Insensitive Imprecision in Andersen's Analysis
	Precise Analysis via Witness Search
	A Precise Algorithm for Finite Memory
	Handling Summarized Locations
	A Symbolic Encoding

	Is There a Precision Gap in Practice?
	Discussion: Why is There No Precision Gap in Practice?
	Threats to Validity

	Related Work
	Conclusion
	References

