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Abstract. Precise heap reachability information is a prerequisite for many static
verification clients. However, the typical scenario is that the available heap infor-
mation, computed by say an up-front points-to analysis, is not precise enough for
the client of interest. This imprecise heap information in turn leads to a deluge
of false alarms for the tool user to triage. Our position is to approach the false
alarm problem not just by improving the up-front analysis but by also employing
after-the-fact, goal-directed refutation analyses that yield targeted precision im-
provements. We have investigated refutation analysis in the context of detecting
statically a class of Android memory leaks. For this client, we have found the
necessity for an overall analysis capable of path-sensitive reasoning interproce-
durally and with strong updates—a level of precision difficult to achieve globally
in an up-front manner. Instead, our approach uses a refutation analysis that mixes
highly precise, goal-directed reasoning with facts derived from the up-front anal-
ysis to prove alarms false and thus enabling effective and sound filtering of the
overall list of alarms.

The depth and breadth of what static verification tools can do is really quite astound-
ing. However, the unfortunate truth is that for a software developer to fully realize the
benefits of static verification, she must go through the onerous task of triaging the warn-
ings that such a tool produces to determine whether the warnings are true bugs or false
alarms. Only then can bug fixes be brought to bear. The situation is particularly dra-
matic when we consider the verification of modern programs that make extensive use of
heap allocation. Precise heap information is a prerequisite for effective reasoning about
nearly any non-trivial property of such programs. While there is a large body of work
on heap reasoning, including in broad areas like pointer analysis and shape analysis,
the all-too-common situation is that the available heap information is not quite precise
enough for the client of interest.

Our position is to approach the false alarm problem not just by improving up-front
precision but also with analyses for alarm triage that can wield after-the-fact, targeted
precision improvements on demand. In this context, we investigate the combination of
a scalable, off-the-shelf points-to analysis as an up-front analyzer with an ultra-precise,
after-the-fact refutation analysis for heap reachability queries. The particular challenge
that we examine is how to maximally leverage the combination of the up-front analysis
and the after-the-fact refutation analysis.

The development of our approach has been driven in part by building a tool for
detecting a pernicious class of memory leaks in Android applications. In brief, such
a leak occurs when an operating system object of type Activity is reachable from
a static field after the end of its lifecycle. At this point, the Activity object is no
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Fig. 1. From verification to alarm triage to bug fixes. The traditional setup (left) requires signifi-
cant manual effort to triage alarms before bug fixes can be realized. Our approach (right) targets
the alarm triage problem with an after-the-fact, automated refutation analysis that soundly filters
out as many false alarms as possible to lower the manual triaging effort required. The automated
algorithms are outlined in orange, the artifacts that they take as input or output are outlined in
blue, and manual effort is outlined in red.

longer used by the operating system but cannot be freed by the garbage collector. For
this client, we found the need for a highly precise heap reachability analysis capable of
interprocedural path-sensitive reasoning with strong updates. This level of precision is
quite difficult to achieve globally in an up-front manner, especially for programs with
the size and complexity of our target applications (40K source lines of code plus 1.1M
lines of the Android framework).

The conceptual architecture of our approach is diagrammed in Fig. 1. On the left, we
show the traditional setup for verification emphasizing that if no proof is obtained, then
the report of alarms must be triaged before bug fixes can be produced. On the right, we
illustrate that our approach is to drop in a refuter stage between the alarm report and the
manual triaging process. A refuter is an automated program analysis that tries to prove
as many alarms false as possible in a goal-directed manner, thereby soundly filtering the
list of alarms (hopefully significantly) that manual triaging must consider. For the An-
droid leak client, the “Analyzer” in this architecture is instantiated with an off-the-shelf,
state-of-the-art points-to analysis, and the “Refuter” is a tool called THRESHER that
implements a highly precise symbolic analysis for refuting heap reachability queries.

In our terminology, a sound refuter is given a query assertion σ̂ (i.e., an abstraction
of a set of concrete states) at a particular program point ! that the up-front analyzer is
unable to verify. The goal of the refuter is in essence to derive a contradiction—to prove
that there is no possible trace to program point ! with any concrete state satisfying σ̂ .
If successful, the alarm is false and can be filtered. Importantly, soundness of refutation
analysis can be phrased in a partial correctness sense neither requiring witnessing a
concrete trace to a state inside or outside the set abstracted by σ̂ . In particular, not asking
for witness traces enables coarser approximation while being sound with respect to
refutations. In our setting, the abstract state σ̂ is a separation logic formula constraining
a sub-heap, which permits the necessary strong update reasoning, and the analysis is a
goal-directed, backwards symbolic analysis that over-approximates all paths to !. The
partial-correctness–style soundness criteria enables a relatively simplistic loop invariant
inference procedure over separation constraints that turns out to be effective in practice
for finding refutations.
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While the refuter has the advantage of being goal-directed, the needed level of preci-
sion described above is still quite challenging to obtain while simultaneously achieving
the required scalability. To achieve better scalability, one contribution of this work is
a novel use of the up-front points-to analysis result (diagrammed in Fig. 1 as an arrow
from “Facts” to “Refuter”). At a high-level, we enrich the abstract domain in the refu-
tation analysis with a new pure constraint (a from constraint) that connects the heap
abstraction during refutation analysis with the heap abstraction of the up-front points-to
analysis. In essence, the from constraint enables reduction [4] with the points-to analy-
sis result to derive contradictions earlier with less case splitting. This reduction is par-
ticularly important in our context, as case splitting is highly problematic for backwards
analysis with separation constraints (see [3, Sect. 6]).

In the remainder of this extended abstract, we sketch (1) the soundness criteria for
refutation analysis and (2) how the from constraint enables deriving contradictions ear-
lier with less case splitting. Further details about our approach and methodology are
described elsewhere [1, 2]. The bottom line result for our application to Android leak
detection is that on a suite of seven Android applications ranging from 2K source lines
of code to 40K lines plus the Android framework, THRESHER refuted 172 out of 196
false alarms while exposing 115 true bugs. In other words, THRESHER lowered the false
alarm rate from 63% to 17% as compared to the points-to analysis alone—effectively
filtering 88% of the false alarms reported by the points-to analysis.

Refutation Soundness

Concrete

σ ∈ State s ∈ Statement 〈σ ,s〉 ⇓ σ ′

Abstract

σ̂ ∈ ˆState γ : ˆState →℘(State) ' {σ̂} s
{

σ̂ ′}

We leave both the notion
of concrete state σ and
the programming language
of interest mostly unspeci-
fied. The programming lan-
guage is assumed only to be
an imperative language of
statements s defined by a
big-step operational semantics judgment form 〈σ ,s〉 ⇓ σ ′ stating that in concrete state
σ , evaluating statement s can result in a state σ ′. The abstraction σ̂ is unspecified ex-
cept that its meaning is given by a standard concretization function γ. And we write an
unspecified abstract semantics for refuting queries as a judgment form deriving a Hoare
triple ' {σ̂} s

{
σ̂ ′} stating a pre-condition σ̂ and post-condition σ̂ ′ for a statement s.

The soundness condition for refutations in which we are interested can be stated as
follows:

Condition 1 (Refutation Soundness)
If 〈σ ,s〉 ⇓ σ ′ and ' {σ̂} s

{
σ̂ ′} such that σ ′ ∈ γ(σ̂ ′),

then σ ∈ γ(σ̂).

Informally, given a query post-condition σ̂ ′, we output a query pre-condition σ̂ such
that if there is some execution of statement s to a concrete state σ ′ satisfying σ̂ ′, then
that execution must begin in a concrete state σ satisfying σ̂ . Note that the pre- and post-
conditions are switched as compared to the standard statement of partial correctness.
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This switching in the soundness condition is what we consider defining a goal-directed
analysis.

If we derive ⊥, the abstraction of the empty set of concrete states, for the query
pre-condition σ̂ , then there is no execution of statement s to a state satisfying the
query post-condition σ̂ ′. In other words, we have derived a refutation. Our main point
is not Condition 1 itself but that witnessing an execution is not required for deriving
refutations.

Reducing Separation Constraints with Points-to Facts

The result of a (may) points-to analysis is a points-to graph G̊ : 〈V̊ , E̊〉. A vertex repre-
sents a set of possible memory addresses, typically those allocated at a particular static
program point (under some context-sensitivity policy). Such a vertex is typically called
an abstract location. An edge from vertex v̊1 to v̊2 states that there may be an execution
from an address in the concretization of v̊1 to an address in the concretization of v̊2. Let
us write r̊ for a set of vertices in a points-to graph (i.e., r̊ ⊆ V̊ for a points-to graph
G̊ : 〈V̊ , E̊〉).

In the refutation analysis, let us write â for a symbolic address that abstracts a single
concrete address. A from constraint

â from r̊

relates a symbolic address and a set of abstract locations in the points-to graph in a
rather expected way. The meaning is that the concrete address abstracted by â must be
in the set of concrete addresses abstracted by r̊ and can be axiomatized as follows for a
given points-to graph G̊ : 〈V̊ , E̊〉:

â from /0 ⇐⇒ false
â from V̊ ⇐⇒ true

â from r̊1 ∧ â from r̊2 ⇐⇒ â from r̊1 ∩ r̊2

â from r̊1 ∨ â from r̊2 ⇐⇒ â from r̊1 ∪ r̊2

For our purposes, if we ever derive â from /0, then we have a derived refutation.
To see how from constraints enable earlier contradictions, consider the following

example triple:

'






(
y·f 0!p ∧ x 1= y

)

∨(
y from ptG̊(x)∩ptG̊(y) ∧ x= y

)





x.f := p { y·f 0!p }

Here, we write a program variable (e.g., x) for the value stored there. The query post-
condition y·f 0! p states that we are considering a concrete state that has at least one
memory location where the contents of field y.f is p, written y·f 0! p. In the pre-
condition, there are two cases to consider depending on whether or not x and y alias. In
the first disjunct, we are looking for a way to reach the pre-location of the assignment
y·f 0! p with x and y not aliasing. In the second, we see if it is possible to reach the
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pre-location with x and y aliasing, which is a sufficient condition to imply the original
query after the assignment. The shaded from constraint intersects the set of possible
abstract locations of y with the points-to set of x, written ptG̊(x). It says that this case is
only possible if the intersection of the points-to set of x and the points-to set of y is non-
empty. But even if this intersection is non-empty, the from constraint does not simply
“check and forget” but retains whatever restriction obtained by considering the points-to
set of x. Intuitively, the â from r̊ constraint abstracts the set of storage locations through
which the concrete address corresponding to â flows.

Anecdotally, we have observed that from constraints are particularly important when
branching from a method body to all of the call sites of the method (for context-
sensitivity). Many of the disjuncts corresponding to the call sites are ruled out by a
contradictory from constraint when intersecting with the points-to sets of the actual ar-
guments. Intuitively, when such disjuncts are ruled out, we obtain a goal-directed form
of object-sensitivity without the cost of analyzing the code between the argument’s al-
location site and the call site.
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