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ABSTRACT

Event-driven programming frameworks, such as Android, are based

on components with asynchronous interfaces. The protocols for

interacting with these components can often be described by finite-

state machines we dub callback typestates. Callback typestates are

akin to classical typestates, with the difference that their outputs

(callbacks) are produced asynchronously. While useful, these spec-

ifications are not commonly available, because writing them is

difficult and error-prone.

Our goal is to make the task of producing callback typestates

significantly easier. We present a callback typestate assistant tool,

DroidStar, that requires only limited user interaction to produce

a callback typestate. Our approach is based on an active learning

algorithm, L∗. We improved the scalability of equivalence queries

(a key component of L∗), thus making active learning tractable on

the Android system.

We use DroidStar to learn callback typestates for Android

classes both for cases where one is already provided by the docu-

mentation, and for cases where the documentation is unclear. The

results show that DroidStar learns callback typestates accurately

and efficiently. Moreover, in several cases, the synthesized callback

typestates uncovered surprising and undocumented behaviors.
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1 INTRODUCTION

Event-driven programming frameworks interact with client code

using callins and callbacks. Callins are framework methods that the

client invokes and callbacks are client methods that the framework

invokes. The client-framework interaction is often governed by a

protocol that can be described by a finite-state machine we call

callback typestate. Callback typestates are akin to classical types-

tates [36], with the key difference that their outputs (callbacks) are

produced asynchronously. Our goal is to make the task of producing

callback typestates significantly easier for developers.

As an example of a callback typestate, consider a typical inter-

action between a client application and the framework when the

client wants to use a particular service. The client asks for the ser-

vice to be started by invoking an startService() callin. After the

framework receives the callin, it asynchronously starts initializing

the service. When the service is started and ready to be used, the

framework notifies the client by invoking a onServiceStarted()
callback. The client can then use the service. After the client fin-

ishes using the service, it invokes a shutdownService() callin to

ask the framework to stop the service.

Callback typestates. Callback typestates are useful in a number

of ways, but they are notoriously hard to produce. First, callback

typestates are a form of documentation. They tell client application

programmers in what order to invoke callins and which callback

to expect. Android framework documentation for some classes

already uses pictures very similar to callback typestates (Figure 1).

Second, callback typestates are useful in verification of client code.

They enable checking that a client uses the framework correctly.

Third, even though we infer the callback typestates from framework

code, they can be used for certain forms of framework verification.

For instance, one can infer typestates for different versions of the

framework, and check if the interface has changed.

Callback typestates are very hard to produce manually. On one

hand, inspecting code to see in what situation a callback arrives, and

what callins are enabled after that is error-prone. Even developers

familiar with the framework often miss corner-case behaviors. On

the other hand, obtaining the callback typestate with manual testing

is hard. One would need to run all sequences of callins, mixed in

sequence with the callbacks they produce. We systematize this

testing approach using an active learning algorithm.

Callback typestate assistant DroidStar. We present a tool that

makes producing callback typestates significantly easier. Our tar-

get user is a developer who wrote an Android class that interacts

1160

2018 ACM/IEEE 40th International Conference on Software Engineering



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Radhakrishna et al.

asynchronously using callbacks with client code. DroidStar is a

comprehensive framework for semi-automatically inferring call-

back typestates. The required user interaction happens in multiple

steps. In the first step, the user provides code snippets to perform lo-

cal tasks, such as code for class initialization and code for invoking

each callin (similarly as in unit tests). This is sufficient as long as

certain widely applicable assumptions hold. First, we assume that

each sequence of callins produces a sequence of callbacks determin-

istically (this assumption fails when for instance a callback has a

parameter that is ignored at first by DroidStar but that influences

the typestate). Second, we assume that the resulting typestate is

finite. If these assumptions fail, in the following steps, DroidStar

asks the user for a solution to the problem. For instance, one way to

remove non-determinism is to refine one callback into two separate

logical callbacks, based on the parameter values. This design al-

lows DroidStar to offer the user control over the final result while

requiring only limited, local, insight from the user. DroidStar is

available for download at https://github.com/cuplv/droidstar

Approach. We present a method for inferring typestates for An-

droid classes. However, our method is equally applicable in other

contexts. The core algorithm is based on Angluin’s L∗ algorithm [5]

adapted to Mealy machines [32]. In this algorithm, a learner tries to

learn a finite-state machine — in our case a callback typestate — by

asking a teacher membership and equivalence queries. Intuitively,

a membership query asks for outputs corresponding to a sequence

of input callins, and the equivalence query asks if the learned type-

state is correct. We note that the teacher does not need to know

the solution, but only needs to know how to answer the queries.

The key question we answer is how to implement oracles for the

membership and equivalence queries. We show how to implement

membership queries on Android classes using black-box testing.

Our main contribution here is an efficient algorithm for implement-

ing the equivalence query using membership query. The insight

here is that the number of membership queries can be bounded

by a function of a new bound we call the distinguisher bound. We

empirically confirmed that for Android classes, the distinguisher

bound is significantly smaller than the state bound used in previ-

ous work [12, 16]. Given that the number of required membership

queries depends exponentially on the distinguisher bound, the novel

bound is what enables our tool to scale to Android classes.

Results.We use DroidStar to synthesize callback typestates for 16

Android framework classes and classes from Android libraries. The

results show that DroidStar learns callback typestates accurately

and efficiently. This is confirmed by documentation, code inspec-

tion, and manual comparison to simple Android applications. The

running time of DroidStar on these benchmarks ranged between

43 seconds and 72 minutes, with only 3 benchmarks taking more

than 10 minutes. The usefulness of the distinguisher bound was also

confirmed. Concretely, using previously known bounds, learning

the callback typestate for one of our examples (MediaPlayer) would

take more than a year, whereas with the distinguisher bound, this

example takes around 72 minutes. Furthermore, by inspecting our

typestates, we uncovered corner cases with surprising behavior

that are undocumented and might even be considered as bugs in

some cases. For instance, for the commonly used AsyncTask class, if

execute() is called after cancel() but before the onCancelled()

Figure 1: Part of MediaPlayer’s callback typestate from https://developer.
android.com/reference/android/media/MediaPlayer.html

callback is received, it will not throw an exception but will never

cause the asynchronous task to be run. Section 6 presents our results

in more detail.

Contributions. The contributions of this paper are: (a) We intro-

duce the notion of callback typestates and develop an approach,

based on the L∗ algorithm, to infer them. (b) We show how to imple-

ment efficiently membership and equivalence oracles required by

the L∗ algorithm. (c) We evaluate our approach on examples from

the Android framework, and show its accuracy and effectiveness.

2 WORKFLOW AND ILLUSTRATIVE

EXAMPLE

We use the Android Framework’s MediaPlayer class to explain the

standard workflow for inferring callback typestate using Droid-

Star. This class is highly stateful—its interface includes many meth-

ods that are only meaningful or enabled in one or two particular

player states—and makes extensive use of callins and callbacks

to handle the delays of loading and manipulating large media

files. These properties make callback typestate a perfect fit; in fact,

MediaPlayer has one of the very few examples where we found a

complete callback typestate specification in the Android libraries

documentation. This callback typestate is shown in Figure 1.

In Figure 1, callins are represented by single arrows and callbacks

by double arrows. Let us look at one part of the protocol that

governs the client-framework interaction. The client first invokes

the callin setDataSource(), and the protocol transitions to the

Initialized state. In this state, the client can invoke the callin

prepareAsync(), and the protocol transitions to the Preparing
state. In the Preparing state, the client cannot invoke any callins,

but the framework can invoke the onPrepared() callback, and then

the protocol transitions to the Prepared state. At this point, the

client can invoke the start() callin, and the media starts playing.
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Our goal is to semi-automatically infer the callback typestate

from the figure using the tool DroidStar. The developer interacts

with DroidStar in several steps, which we describe now.

2.1 Developer-Provided Snippets

To apply DroidStar to the MediaPlayer class, the developer pro-

vides a number of code snippets detailed below that act as an inter-

face through which the tool can examine MediaPlayer instances.

Test object and environment instantiation. The main callback

typestate inference algorithm of DroidStar works roughly by re-

peatedly performing tests in the form of sequences of method calls

on an object of the given class, i.e., the MediaPlayer. Each test

must begin with an identical, isolated, class object, and if necessary,

a standard environment. In the first step, the developer provides a

snippet to initialize such an object and environment. In the case of

MediaPlayer, this snippet is as simple as discarding the previous

instance, creating a new one with new MediaPlayer(), and regis-

tering the necessary callback listeners (explained in the Callback

instrumentation paragraph below). In some cases this snippet is

more complex. As an example, we cannot create new instances of

the BluetoothAdapter class, so for that class this snippet would

need to bring the existing instance back to a uniform initial state.

Callin declaration. The next step is to declare the alphabet of “in-

put symbols” that represent the callins in the interface of our class—

the final callback typestate will be written using these symbols—

and map each symbol to the concrete code snippet it represents. In

most cases, there is a one-to-one correspondence between input

symbols and callin methods. For example, the code snippets associ-

ated with the input symbols prepare, prepareAsync, and start are

prepare();, prepareAsync();, and start();, respectively.

In some cases, such as when a callin takes a parameter, the

developer may instead map a symbol to a set of code snip-

pets representing alternative forms of the input which are sus-

pected to have different behavior. In the MediaPlayer class, the

setDataSource() callin method takes a URL argument. The de-

veloper might (rightly) believe that depending on the validity and

reachability of the given URL, the behavior of the callin in the types-

tate may differ. In this case, the developer may provide the two snip-

pets setDataSource(goodURL); and setDataSource(badURL);
for the same callin. DroidStar will consider both snippets for

generating tests, and further, it will indicate if they behave differ-

ently with respect to the typestate. In case a difference is detected,

the “non-determinism” is handled as explained later in this section.

The complete set of input symbols which would be declared

and mapped for the MediaPlayer class are setDataSource, prepare,

prepareAsync, start, stop, reset, release, and pause.

Callback instrumentation. As for the callin methods, which act

as the input symbols in the callback typestate, the callback methods

act as the output symbols in the callback typestate. The developer

specifies the set of output callback symbols and associated snip-

pets to detect when callbacks occur. In most cases, this involved

adding the listeners for the callbacks in the initialization snippet

as mentioned above. In the MediaPlayer class, the output symbols

are onCompleted and onPrepared.

2.2 Automated Callback-Typestate Inference

Once the developer provides the input and output symbols and the

associated snippets, DroidStar attempts to automatically learn the

callback typestate following the framework of the L∗ algorithm.

L∗ inference. In L∗, the learner tests sequences of inputs until she

can form a consistent hypothesis automaton. Each such test (or

sequence of inputs) is called a membership query. Once a hypothesis

automaton is produced, an equivalence query is performed; i.e.,

the hypothesis automaton is checked for equivalence with the true

callback typestate. If the two are equivalent, we are done; otherwise,

a counter-example test is returned from which the tool learns. This

process repeats until the produced hypothesis automaton is correct.

For MediaPlayer, the first set of membership queries each con-

sist of a single different callin. Of these, only the query containing

setDataSource() succeeds. The learner continues with longer

membership queries while building the hypothesis automaton. For

instance, it learns that prepareAsync() and prepare() do not

lead to the same state: it is possible to invoke the start() after

prepare(), but not after prepareAsync(). Once the client receives

the callback onPrepared(), start() may be called. The learner

thus hypothesizes a transition from the Preparing to the Prepared

on onPrepared(). Once the hypothesis is complete, the learner asks

the equivalence query. Initially, a counter-example to equivalence

is returned using which the learner refines its hypothesis. The final

solution is found after 5 equivalence queries.

Answering Equivalence Queries. The equivalence query, i.e.,

checking if a learned callback typestate is in fact the true callback

typestate is undecidable in general. However, assuming a bound on

the size of the typestate, the equivalence query can be implemented

using further testing. However, equivalence queries are still expen-

sive and to make them practical we present an new optimization

based on a distinguisher bound. We can observe in Figure 1 that for

any pair of states there is a transition in one state which leads to an

error in the other. This corresponds to a distinguisher bound of 1.

Small distinguisher bounds arise because typestates are not random

automata but part of an API designed for ease of use and robustness.

Such APIs are coded defensively and are fail-fast [35], i.e., errors are

not buffered but reported immediately. Each state in the typestate

has a specific function and an associated set of callins and callbacks.

In automata terms, the alphabet is roughly the same size as the

number of states and each state has only a few transitions, making

any two states easy to distinguish. In Section 4.3, we explain how

to use the distinguisher bound to implement equivalence queries

and discuss why distinguisher bounds are small in practice.

2.3 Obstacles to Inference and Solutions

The L∗ based callback typestate inference algorithm makes several

assumptions about the behavior of the class that do not always hold.

DroidStar is designed to detect these violations of assumptions and

notify the developer. Here, we discuss two such assumptions, the

exceptional situations that arise when the assumptions are violated,

and the additional developer intervention needed to handle such

cases.

Non-determinism. In input-output automata learning theory,

non-determinism makes learning impossible. Non-determinism is
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the possibility of the same sequence of input callins producing dif-

ferent sequences of output callbacks across tests. Non-determinism

may be due to various controllable and non-controllable factors. Con-

trollable factors include cases where behavior depends on if a file

exists, if a URL is reachable, etc. On the other hand, non-controllable

factors include random number generators, device sensors, etc. In

practice, most of the non-determinism was controllable.

The main technique for handling non-determinism is via refine-

ment of input or output alphabets. Here, a single callin or callback is

split into multiple "logical" inputs or outputs.

(a) Controllable non-determinism can be eliminated by incor-

porating the controlling factor into the inputs. For example, in

the SQLiteOpenHelper class, the behavior of the constructor
callin changes depending on if a file exists. However, after splitting

the callin into two separate callins constructor/fileExists and

constructor/noFileExists, the behavior of each of each callin

becomes deterministic with respect to these callins.

(b) Another source of non-determinism is when the same callback

is used to notify logically different events. For example, a class

may use a generic onComplete callback which is passed a status

parameter that can have the values “Success” and “Failure”. Based

on this value, different further callins are enabled, leading to non-

determinism. Here, the developer may manually refine the callback

into two output symbols onEvent/Success and onEvent/Failure,
and the behavior is deterministic with respect to these.

In summary, for controllable non-determinism, the onus is on the

developer to identify the source of the detected non-determinism

and provide a refinement of the input or output alphabet and corre-

sponding code snippets to control the source. No general technique

exists to handle non-controllable non-determinism, but specific

cases can be handled using techniques shown in Section 5.

Non-regularity. Another basic assumption that L∗ based infer-

ence algorithm makes is that the callback typestate under con-

sideration is regular. This assumption is commonly violated in

request-response style behavior of classes where the number of

responses (output callbacks) invoked is exactly equal to the number

of requests (input callins). Our solution to this problem is to restrict

the learning to a subset of the class behavior, such as inputs with at

most one pending request callin using a learning purpose [1]. These

restrictions makes the behavior regular and amenable to learning.

3 THE CALLBACK TYPESTATE LEARNING

PROBLEM

We introduce formal models of interfaces, define the callback type-

state learning problem, and present an impossibility result about

learning typestates. Callback typestates have both inputs (corre-

sponding to callins) and outputs (corresponding to callbacks). In au-

tomata theory, callback typestates can be seen as interface automata.

Interface automata [14] are a well-studied model of automata that

can produce outputs asynchronously w.r.t. inputs. We use the name

callback typestates to emphasize that they are a generalization of

typestates as used in the programming languages literature.

3.1 Definitions and Problem Statement

Asynchronous interfaces. Let Σi and Σo be the set of callins and

callbacks of an asynchronous interface. We abstract away parameter

and return values of callins and callbacks, and model a behavior of

the interface as a trace τi = σ0 . . . σn ∈ (Σi ∪ Σo )
∗. The interface I

is given by 〈Σi , Σo ,Πi 〉 where Πi ⊆ {Σi ∪ Σo }
∗ is the prefix-closed

set of all feasible traces of the interface.

Interface automata. We use interface automata [14] to represent

asynchronous interfaces. An interface automaton A is given by

〈Q,qι , Σi , Σo ,ΔA〉 where: (a) Q is a finite set of states, (b) qι ∈ Q
is the initial state, (c) Σi and Σo are finite sets of input and output

symbols, and (d) ΔA ⊆ Q × {Σi ∪ Σo } × Q are a set of transitions.

A trace τa of A is given by σ0 . . . σn if ∃q0 . . .qn+1 : q0 = qι ∧
∀i .(qi ,σi ,qi+1) ∈ ΔA. Traces(A) is the set of all traces of A.

Problem statement. Given an interface I = 〈Σi , Σo ,Πi 〉, the call-

back typestate learning problem is to learn an interface automaton A

such that Πi = Traces(A). We allow the learner to ask amembership

oracleMOracle[I]membership queries. For amembership query, the

learner picksmQuery = i0i1 . . . in ∈ Σ
∗
i and the membership oracle

MOracle[I] returns either: (a) a trace τa ∈ Πi whose sequence of

callins is exactly mQuery, or (b) ⊥ if no such trace exists.

3.2 The Theory and Practice of Learning

Typestates

In general, it is impossible to learn callback typestates using only

membership queries; no finite set of membership queries fixes

a unique interface automaton. However, callback typestates can

be effectively learned given extra assumptions. We now analyze

the causes behind the impossibility and highlight the assumptions

necessary to overcome it.

Unbounded asynchrony. Membership queries alone do not tell

us if the interface will emit more outputs (callbacks) at any point

in time. Hence, we assume:

Assumption 1: Quiescence is observable.

This assumption is commonly used in ioco-testing frameworks [37].

In our setting, we add an input wait and an output quiet, where

quiet is returned after a wait only if there are no other pending

callbacks. In practice, quiet can be implemented using timeouts,

i.e., pending callbacks are assumed to arrive within a fixed amount

of time. If no callbacks are seen within the timeout, quiet is output.

Example 3.1. Using wait and quiet, in the MediaPlayer

example, we have that setDataSource() · prepareAsync()

· onPrepared() · wait · quiet is a valid trace, but

setDataSource() · prepareAsync() · wait · quiet is not.

Behavior unboundedness. For any set of membership queries,

let k be the length of the longest query. It is not possible to find

out if the interface exhibits different behavior for queries much

longer than k . This is a theoretical limitation, but is not a problem in

practice [7]; most callback typestates are rather small (≤ 10 states).

Assumption 2: An upper bound on the size of

the typestate being learned is known.

Non-determinism. We need to be able to observe the systems’

behaviors to learn them and non-determinism can prevent that.

Therefore, we assume:

Assumption 3: The interface is deterministic.

We assume that for every trace τa of the interface, there is at most

one output o ∈ Σo such that τa ·o ∈ Πi . In practice, the non-

determinism problem is somewhat alleviated due to the nature of
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callback typestates (see Section 5). See [1] for a detailed theoretical

discussion of how non-determinism affects learnability.

Example 3.2. Consider an interface with traces given by

(input · (out1 | out2))∗. All membership queries are a sequence of

input’s; however, it is possible that the membership oracle never

returns any trace containing out2. In that case, no learner will be

able to learn the interface exactly.

4 LEARNING CALLBACK TYPESTATES

USING L∗

Given Assumption 1 and Assumption 3, we first build a “syn-

chronous closure” of an asynchronous interface (Section 4.1). Then,

we show how to learn the synchronous closure effectively given

Assumption 2 (Section 4.2 and 4.3).

4.1 From Asynchronous to Synchronous

Interfaces

Using Assumption 1 and 3, we build a synchronous version of an

interface in which inputs and outputs strictly alternate following

[1]. For synchronous interfaces, we can draw learning techniques

from existing work [1, 5, 25, 32].

Define Σ̃i = Σi ∪ {wait} and Σ̃o = Σo ∪ {quiet, λ, err}. The

purpose of the extra inputs and outputs is discussed below. For any

τs ∈ (Σ̃i · Σ̃o )
∗, we define async(τs ) = τa ∈ (Σi ∪ Σo )

∗ where τa is

had from τs by erasing all occurrences of wait, quiet, λ, and err.

Synchronous closures. The synchronous closure Is of an asynchro-

nous interface I = 〈Σi , Σo ,Πi 〉 is given by 〈Σ̃i , Σ̃o ,Πs 〉 where Σ̃i
and Σ̃o are as above, and Πs ⊆ (Σ̃i · Σ̃o )

∗ is defined as the smallest

set satisfying the following:
ϵ ∈ Πs

τs ∈ Πs ∧ async(τs ) · i ∈ Πi =⇒ τs · i · λ ∈ Πs
τs ∈ Πs ∧ async(τs ) ·o ∈ Πi =⇒ τs ·wait ·o ∈ Πs
τs ∈ Πs ∧ async(τs ) · i � Πi =⇒ τs · i · err ∈ Πs

τs ∈ Πs ∧ o ∈ Σo ∧ async(τs ) ·o � Πi =⇒ τs ·wait · quiet ∈ Πs
τs ∈ Πs ∧ τs ends in err =⇒ τs · i · err ∈ Πs

Informally, in Is : (a) Each input is immediately followed by a

dummy output λ; (b) Each output is immediately preceded by a

wait input wait; (c) Any call to an input disabled in I is immediately

followed by an err. Further, all outputs after an err are err’s. (d) Any

call to wait in a quiescent state is followed by quiet.

Given MOracle[I] andAssumption 1, it is easy to construct the

membership MOracle[Is ]. Note that due to Assumption 3, there

is exactly one possible reply MOracle[Is ](mQuery) for each query

mQuery. Further, by the construction of the synchronous closure,

the inputs and outputs in MOracle[Is ](mQuery) alternate.

Mealy machines. We model synchronous interfaces using the

simpler formalism of Mealy machines rather than interface au-

tomata. A Mealy machineM is a tuple 〈Q,qι , Σ̃i , Σ̃o ,δ ,Out〉 where:

(a) Q , qι , Σ̃i , and Σ̃o are states, initial state, inputs and outputs,

respectively, (b) δ : Q × Σ̃i → Q is a transition function, and

(c) Out : Q × Σ̃i → Σ̃o is an output function. We abuse notation

and write Out(q, i0 . . . in ) = o1 . . . on and δ (q, i0 . . . in ) = q′ if

∃q0, . . . ,qn+1 : q0 = q ∧ qn+1 = q′ ∧ ∀0 ≤ i ≤ n : δ (qi , ii ) =
qi+1 ∧ Out(qi , ii ) = oi . A sequence i0o0 . . . inon ∈ (Σ̃i · Σ̃o )

∗ is a

trace of M if Out(qι , i0 . . . in ) = o0 . . . on . We often abuse notation

and write M(i0 . . . in ) instead of Out(qι , i0 . . . in ). We denote by

Traces(M) the set of all traces of M.

4.2 L∗: Learning Mealy Machines

For the sake of completeness, we describe the classical L∗ learning

algorithm by Angluin [5] as adapted to Mealy machines in [32].

A reader familiar with the literature on inference of finite-state

machines may safely skip this subsection.

Fix an asynchronous interface I and its synchronous closure Is .

In L∗, in addition to a membership oracle MOracle[Is ], the learner

has access to an equivalence oracle EOracle[Is ]. For an equivalence

query, the learner passes a Mealy machine M to EOracle[Is ], and

is in turn returned: (a) A counterexample input cex = i0 . . . in such

that M(cex) = o0 . . . on and MOracle[Is ](cex) � i0o0 . . . inon , or

(b) Correct if no such cex exists.

The full L∗ algorithm is in Algorithm 1. In Algorithm 1, the

learner maintains: (a) a set SQ ⊆ Σ̃∗i of state-representatives (ini-

tially set to {ϵ}), (b) a set E ⊆ Σ̃∗i of experiments (initially set to Σ̃i ),

and (c) an observation tableT : (SQ ∪SQ · Σ̃i ) → (E → Σ̃∗o ). The ob-

servation table maps each prefix wi and suffix e to T (wi )(e), where

T (wi )(e) is the suffix of the output sequence of MOracle(wi · e) of
length |e |. The entries are computed by the sub-procedure FillTable.

Intuitively, SQ represent Myhill-Nerode equivalence classes of

the Mealy machine the learner is constructing, and E distinguish

between the different classes. For SQ to form valid set of Myhill-

Nerode classes, each state representative extended with an input,

should be equivalent to some state representative. Hence, the algo-

rithm checks if each wi · i ∈ SQ · Σ̃i is equivalent to some w ′i ∈ SQ
(line 3) under E, and if not, adds wi · i to SQ . If no such wi · i exists,

the learner constructs a Mealy machine M using the Myhill-Nerode

equivalence classes, and queries the equivalence oracle (line 5). If

the equivalence oracle returns a counterexample, the learner adds

a suffix of the counterexample to E; otherwise, it returns M. For the

full description of the choice of suffix, see [30, 32].

Theorem 4.1 ([32]). Let there exist a Mealy machine M with

n states such that Traces(M) is the set of traces of Is . Then, given

MOracle[Is ] and EOracle[Is ], Algorithm 1 returnsMmaking at most

|Σ̃i |
2n + |Σ̃i |n

2m membership and n equivalence queries, wherem is

the maximum length of counterexamples returned by EOracle[Is ]. If

EOracle[Is ] returns minimal counterexamples,m ≤ O(n).

4.3 An Equivalence Oracle Using Membership

Queries

Given a black-box interface in practice, it is not feasible to directly

implement the equivalence oracle required for the L∗ algorithm.

Here, we demonstrate a method of implementing an equivalence

oracle using the membership oracle using the boundedness assump-

tion (Assumption 2). As before fix an asynchronous interface I

and its synchronous closure Is . Further, fix a target minimal Mealy

machine M∗ such that Traces(M∗) is the set of traces of Is .

State bounds. A state bound of BState implies that the target Mealy

machine M∗ has at most BState states. Given a state bound, we can

replace an equivalence check with a number of membership queries

using the following theorem.
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Algorithm 1 L∗ for Mealy machines

Input: Membership oracle MOracle, Equivalence oracle EOracle

Output: Mealy machine M

1: SQ ← {ϵ}; E ← Σ̃i ; T ← FillTable(SQ , Σ̃i ,E,T )
2: while True do

3: while ∃wi ∈ SQ , i ∈ Σ̃i : �w ′i ∈ SQ : T (wi · i) = T (w ′i ) do

4: SQ ← SQ ∪ {wi · i}; FillTable(SQ , Σ̃i ,E,T )

5: M← BuildMM(SQ , Σ̃i ,T ); cex← EOracle(M)

6: if cex = Correct then returnM

7: E ← E ∪ AnalyzeCex(cex,M); FillTable(SQ , Σ̃i ,E,T )

8: function BuildMM(SQ ,Σ̃i ,Σ̃o ,T )

9: Q ← {[wi ] | wi ∈ SQ }; qι ← [ϵ]
10: ∀wi , i : δ ([wi ], i) ← [w

′
i ] if T (wi · i) = T (w ′i )

11: ∀wi , i : Out([wi ], i) ← o if T (wi )(i) = o
12: return 〈Q,qι , Σ̃i , Σ̃o ,δ ,Out〉

13: function AnalyzeCex(M,cex)

14: for all 0 ≤ i ≤ |cex| and w
p
i ,w

s
i such that w

p
i ·ws

i =

cex ∧ |w
p
i | = 1 do

15: w
p
o ← M(w

p
i ); [w

p′

i ] ← δ ([ϵ],w
p
o )

16: ws
o ← last |ws

i | of Out(MOracle(w
p′

i ·ws
i ))

17: if w
p
o ·ws

o � Out(MOracle(cex)) then return ws
i

18: procedure FillTable(SQ ,Σ̃i ,E,T )

19: for allwi ∈ SQ ∪ SQ · Σ̃i , e ∈ E do
20: T (wi )(e) ← Suffix of Out(MOracle(wi · e)) of length |e |

Theorem 4.2. Let M and M′ be Mealy machines having k and

k ′ states, respectively, such that ∃wi ∈ Σ̃
∗
i : M(wi ) � M′(w ′i ). Then,

there exists an input wordw ′i of length at most k + k ′ − 1 such that

M(w ′i ) � M′(w ′i ).

The proof is similar to the proof of the bound k + k ′ − 2 for

finite automata (see [33, Theorem 3.10.5]). We can check equiv-

alence of M∗ and any given M by testing that they have equal

outputs on all inputs of length at most kM + BState − 1, i.e., using

O(|Σ̃i |
BState+k−1)membership queries. While this simple algorithm

is easy to implement, it is inefficient and the number of required

membership queries make it infeasible to implement in practice.

Other algorithms based on state bounds have a similar problems

with efficiency (see Remark in Section 4.3). Further, the algorithm

does not take advantage of the structure of M. The following dis-

cussion and algorithm rectifies these short-comings.

Distinguisher bounds.A distinguisher bound of BDist ∈ N implies

that for each pair of states q∗1,q
∗
2 in the target Mealy machine M∗

can be distinguished by an input word wi of length at most BDist,
i.e., Out∗(q∗1,wi ) � Out∗(q∗2,wi ). Intuitively, a small distinguisher

bound implies that each state is “locally” different, i.e., can be dis-

tinguished from others using small length input sequences. The

following theorem shows that a state bound implies a comparable

distinguisher bound.

Theorem 4.3. State bound k implies distinguisher bound k − 1.

Small distinguisher bound. In practice, distinguishers are much

smaller than the bound implied by the state bound. For the media-

player, the number of states is 10, but only distinguishers of length

1 are required. This pattern tends to hold in general due to the

following principles of good interface design:

• Clear separation of the interface functions. Each state in the

interface has a specific function and a specific set of callins

and callbacks. There is little reuse of names across state. The

typestate’s alphabet is roughly the same size as the number

of states.

• Fail-fast. Incorrect usage of the interface is not silently ig-

nored but reported as soon as possible. This makes it easier

to distinguish states as disabled callins lead directly to errors.

• No buffering. More than just fail-fast, a good interface is in-

teractive and the effect of callins must be immediately visible

rather than hidden. A good interface is not a combination

lock that requires many inputs that are silently stored and

only acknowledged at the very end.

This observation also is not specific to callbacks typestates and it

has been already observed for libraries [11].

Equivalence algorithm. Algorithm 2 is an equivalence oracle for

Mealy machines using the membership oracle, given a distinguisher

bound. First, it computes state representatives R : Q → Σ̃∗i : for each

q ∈ Q , δ (qι ,R(q)) = q (line 1). Then, for each transition in M, the

algorithm first checks whether the output symbol is correct (line 5).

Then, the algorithm checks the “fidelity” of the transition up to the

distinguisher bound, i.e., whether the representative of the previous

state followed by the transition input, and the representative of

the next state can be distinguished using a suffix of length at most

BDist. If so, the algorithm returns a counterexample. If no transition

shows a different result, the algorithm returns Correct.

Two optimizations further reduce the number of membership

queries: (a) Quiescence transitions. Transitions with input wait and

output quiet need not be checked at line 7; it is a no-op at the

interface level. (b) Error transitions. Similarly, transition with the

output err need not be checked as any extension of an error trace

can only have error outputs.

Remark. Note that if Algorithm 2 is being called from Algorithm 1,

the state representatives from L∗ can be used instead of recomputing R
in line 1. Similarly, the counterexample analysis stage can be skipped

in the L∗ algorithm, and the relevant suffix can be directly returned

(suffix in lines 10 and 11; and i in line 5).

Theorem 4.4. Assuming the distinguisher bound of BDist for the
target Mealy machine M∗, either (a) Algorithm 2 returns Correct

and ∀wi ∈ Σ̃∗i : M(wi ) = M∗(wi ), or (b) Algorithm 2 returns a

counterexample cex andM(cex) � M∗(cex). Further, it performs at

most |Q | · |Σ̃i |
BDist+1 membership queries.

Remark (Relation to conformance testing algorithms).

Note that the problem being addressed here, i.e., testing the equivalence

of a given finite-state machine and a system whose behavior can

be observed, is equivalent to the conformance testing problem from

the model-based testing literature. However, several points make the

existing conformance testing algorithms unsuitable in our setting.

Popular conformance testing algorithms, like the W-method [12]

and the Wp -method [16], are based on state bounds and have an

unavoidableO(|Σ̃i |
BState ) factor in the complexity. In our experiments,

the largest typestate had 10 states and 7 inputs. TheO(|Σ̃i |
BState ) factor

leads to an infeasible (i.e., > 108) number of membership queries.
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Algorithm 2 Equivalence oracle with distinguisher bound

Input: Mealy machine M = 〈Q,qι , Σ̃i , Σ̃o ,δ ,Out〉, Distinguisher

bound BDist, and Membership oracle MOracle

Output: Correct if M = M∗, or cex ∈ Σ̃∗i s. t. M(cex) � M∗(cex)

1: for all q ∈ Q do R(q) ← wi | δ (qι ,wi ) = q s. t. |wi | is minimal

2: for all q ∈ Q, i ∈ Σ̃i do
3: wi ← R(q) · i
4: if Out(q, i) � last symbol of Out(MOracle(wi · i)) then
5: return R(q) · i

6: q′ ← δ (q, i); w ′i ← R(q′)
7: suffix← check(wi ,w

′
i )

8: if suffix � Correct then

9: if M(R(q) · i · suffix) � Out(MOracle(R(q) · i · suffix))
then

10: return R(q) · i · suffix

11: else return R(q′) · suffix

12: return Correct

13: function check(wi , w
′
i )

14: for all suffix ∈ Σ̃≤BDist

i do

15: wo ← Out(MOracle(wi · suffix))

16: w ′o ← Out(MOracle(w ′i · suffix))

17: if the last |suffix| symbols of wo and w ′o differ then

18: return suffix

19: return Correct

However, since distinguisher bounds are often much smaller than

state bounds, O(|Σ̃i |
BDist ) membership queries are feasible (i.e., 103).

The W- and Wp -methods cannot directly use distinguisher bounds.

The other common algorithm, the D-method [20, 22], does not

apply in our setting either. The D-method is based on building a

distinguishing sequence, i.e., an input sequence which produces a

different sequence of outputs from every single state in the machine.

However, for callback typestates, such single distinguishing sequences

do not exist in practice. For similar reasons, conformance testing

algorithms such as the UIO-method [31] do not apply either.

In this light, we believe that Algorithm 2 is a novel conformance

testing algorithm useful in specific settings where resets are inexpen-

sive and systems are designed to have small distinguisher bounds.

4.4 Putting It All Together

We now present the full callback typestate learning solution.

Theorem 4.5. Given a deterministic interface I with observable

quiescence and the membership oracle MOracle[I]. Assume there

exists an interface automaton Awithn states with distinguisher bound
BDistmodeling the typestate of I. Interface automatonA can be learned
with O(|Σi | ·n

3 + n · |Σi |
BDist ) membership queries.

Proof sketch. Starting with an asynchronous interface I and

a membership oracle MOracle[I], using Assumption 1 and As-

sumption 3 we can construct the membership oracle MOracle[Is ]

for the synchronous closure Is of I. Given the distinguisher bound

(or a state bound using Assumption 2 and Theorem 4.3), we can

construct an equivalence oracle EOracle[Is ] using Algorithm 2. Ora-

cles MOracle[Is ] and EOracle[Is ] can then be used to learn a Mealy

machine M with the same set of traces as Is . This Mealy machine

can be converted into the interface automata representing the call-

back typestate of I by: (a) Deleting all transitions with output err

and all self-loop transitions with output quiet, and (b) Replacing

all transitions with input wait with the output of the transition.

5 ACTIVE LEARNING FOR ANDROID

We implemented our method in a tool called DroidStar. In this

section we describe how it works, the practical challenges we faced

when working with Android, and our solutions to overcome them.

DroidStar is implemented as an Android application and learns

callback typestates from within a live Android system.

5.1 Designing an Experiment

To learn a typestate, a DroidStar user creates a test configuration

(an extension of the LearningPurpose class) providing necessary

information about a Java class under study. If known, the distin-

guisher bound can be provided here directly; otherwise, it can be

obtained from Assumption 2 by Theorem 4.3. The instrumented

alphabet, also defined here, specifies an abstract alphabet for the

learning algorithm and translation between the abstract alphabet

and concrete callins/callbacks of the class under study. Several other

options are available for adjusting the learning, the most important

being the quiescence timeout which determines Assumption 1.

5.2 Observing Asynchronous Callbacks

In our approach we assume bounded asynchrony (Assumption

1) and, therefore, we can observe when the interface does not

produce any new output (quiescence). We enforce this assumption

on a real system with timeouts: the membership query algorithm

waits for a new output for a fixed amount of time tmax, assuming

that quiescence is reached when this time is elapsed. However,

Android does not provide any worst case execution time for the

asynchronous operations and we rely on the user to choose a large

enough tmax. The membership query also assumes the existence of

a minimum time tmin before a callback occurs. This ensures that

we can issue a membership query with two consecutive callins (so,

without a wait input in between), i.e., we have the time to execute

the second callin before the output of the first callin.

Consider the MediaPlayer example from Section 2. The member-

ship query setDataSource(URL) ·wait · prepareAsync() ·wait

may not return the onPrepared() if tmax is violated, i.e., if the

callback does not arrive before the timeout, and while testing it is

possible that the prepareAsync() · start() might not return an

error as expected if the lower bound tmin is violated. To avoid such

issues we try to control the execution environment and parameters

to ensure that callbacks occurred between tmin and tmax. In the

MediaPlayer case, we must pick the right media source file.

5.3 Checking and Enforcing Our Assumptions

The simplest experiment to learn a class’s callback typestate ties

a single input symbol to each of its callins and a single output

symbol to each of its callbacks. However, many Android classes

have behaviors which cause this simple experiment to fail and

require more detailed experiments to succeed.

The main challenges when designing an experiment are (a) Non-

deterministic behaviors, i.e., the state of the device and external
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ctor getRDB onCrea
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getRDB
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onCreate

Figure 2: Eliminating non-determinism in SQLiteOpenHelper

events may influence an application. These elements are inherently

non-deterministic; however, non-determinism violates Assump-

tion 3. (b) The parameter space required to drive concrete test cases

to witness a membership query is potentially infinite. Though we

have ignored callin parameters till now, they are a crucial issue

for testing. (c) The protocol we are learning may not be a regular

language. Note that this is a violation of Assumption 2.

Non-Deterministic Behavior. Non-deterministic behavior is dis-

allowed by our Assumption 3. However, to make this assumption

reasonable we must make non-determinism straightforward to

eliminate when it arises. We explain two primary classes of non-

deterministic behaviors and strategies to eliminate these behaviors.

The first class is related to controllable inputs and the second to

uncontrollable ones (such as inputs from the device sensors).

Because the learning algorithm cannot learn from non-

deterministic systems, DroidStar will terminate if such behav-

ior is detected. To assist in this process, DroidStar will report a

non-deterministic behavior is detected and display the disagreeing

sequences to the user. It detects this by caching all membership

queries as input/output sequence pairs. When a new trace is ex-

plored, DroidStar checks that the trace prefixes are compatible

with the previously seen traces.

In the first case, a hidden (not modeled) controllable input influ-

ences the typestate. We resolve this non-determinism by manually

adding the input value and create a finer alphabet that explicate

the previously hidden state of the environment. For example, in

the class SQLiteOpenHelper, the getReadableDatabase() may

either trigger a onCreate() callback or not, depending on the pa-

rameter value to a previous callin (constructor)was the name of

an existing database file. Hence, the behavior of the callin is non-

deterministic, depending on the status of the database on disk. In

the SQLiteOpenHelper example, we split the constructor callin

into constructor/fileExists and constructor/noFileExists
and pass the right parameter values in each case. With this extra

modeling we can learn the interface automaton, since the execu-

tion getReadableDatabase() ends in two different states of the

automaton (see Figure 2).

The second class is the effect of the uncontrollable inputs on a

typestate. Such effects, by definition, cannot be controlled or made

explicit prior to the call. We can sometimes to remove this non-

determinism by merging different outputs, considering them to be

the same. This is the dual of the previous solution.

An example is the SpeechRecognizer, for which calling

startListening() produces different callbacks depending on the

environment. As the environment cannot be reasonably controlled,

we merge outputs to go to the same state. If outputs are erroneously

merged, the non-determinism will propagate and continue to man-

ifest. Thus there is no risk of unsound results.

Handling Callin Parameters. While parameter-less callins such

as start() and stop() are common in Android classes, many

parameterized callins exist. Because input symbols need to be listed

in the experiment definition, the full range of parameter values

cannot be explored. In practice, we found that parameters often

have little effect on the typestate automaton. In cases where they

do affect the automaton, multiple input symbols can be defined to

represent the same method called with several different parameters.

This solution is similar to splitting on environmental effects when

dealing with non-determinism.

Learning fromNon-Regular Languages.An intrinsic limitation

of L∗ is that it learns only regular languages. However, some classes

expose non-regular protocols. Common cases include situations

where a request callin invokedn times trigger exactlyn response call-

backs. In the SpellCheckerSession class, callin getSuggestion()

and callback onGetSuggestions() follow this pattern.

However, even in such cases, it can be useful to build a regular ap-

proximation of the typestate. For example, restricting the typestate

to behaviors where there is at most one pending request (a regular

subset) provides all the information a programmer would need.

Hence, in such cases, we use the technique of learning purposes [1]

to learn a regular approximations of the infinite typestate.

6 EMPIRICAL EVALUATION

We evaluated our interface-learning technique, as implemented

in DroidStar, by using it to generate callback typestates for 16

classes, sampled from the Android Framework and popular third-

party libraries. DroidStar is available at https://github.com/cuplv/

droidstar. For these experiments, DroidStar was run on an LG

Nexus 5 with Android framework version 23. Our evaluation was

designed to answer the following questions:

(1) Does our technique learn typestates efficiently?

(2) What size distinguisher bounds occur in practice? Do they

support the small distinguisher bound hypothesis?

(3) Do the callback typestates we learn reveal interesting or

unintended behavior in the interfaces?

Methodology. For each experimental class, we manually identified

a reduced alphabet of relevant callins and callbacks and provided

them (along with other necessary information as explained in Sec-

tion 5) to DroidStar through instances of the LearningPurpose.
Relevant callins and callbacks for these experiments were those

which, according to the available documentation, appeared to trig-

ger or depend on typestate changes (enabling or disabling of parts

of the interface). Each instance consisted of 50−200 lines of, mostly

boiler-plate, Java or Scala code.

To evaluate efficiency, we measured the overall time taken for

learning, as well as the number of membership (MQ) and equiva-

lence queries (EQ). The number of queries is likely a better measure

of performance than running time: the running time depends on

external factors. For example, in the media player the running time

depends on play-length of the media file chosen during testing.

We validated the accuracy of learned callback typestates using

two approaches. First, for classes whose documentation contains a

picture or a description of what effectively is an callback typestate,

we compared our result to the documentation. Second, for all other
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classes we performed manual code inspection and ran test apps to

evaluate correctness of the produced typestates.

We used a distinguisher bound of 2 for our experiments; further,

we manually examined the learned typestate and recorded the

actual distinguisher bound. For our third question, i.e., does the

learned callback typestate reveal interesting behaviors, we manually

examined the learned typestate, compared it against the official

Android documentation, and recorded discrepancies.

6.1 Results

We discuss the results (in Table 1) and our three questions.

Question 1: Efficiency. The table shows that our technique is rea-

sonably fast: most typestates learned within a few minutes. The

longest one takes 71 minutes, still applicable to nightly testing. The

numbers for membership queries are reported as X (Y )—X is the

number of membership queries asked by the algorithm, while Y
is the number actually executed by the membership oracle. This

number is lower as the same query may be asked multiple times,

but is executed only once and the result is cached. For each bench-

mark, the accuracy validation showed that the produced typestate

matched the actual behavior.

Question 2: Distinguisher Bounds. As mentioned before, we used a

distinguisher bound of 2 for all experiments. However, a manual

examination of the learned callback typestates showed that a bound

of 1 would be sufficient in all cases except the SQLiteOpenHelper
and the OkHttpCallwhere bounds of 2 are necessary. This supports

our conjecture that, in practice, interfaces are designed with each

state having a unique functionality (see Section 4.3).

Question 3: Interesting Learned Behavior. Of the three questions,

our experiments to examine the learned callback typestate for in-

teresting behavior turned out to be the most fruitful, uncovering

several discrepancies, including corner cases, unintended behavior

and likely bugs, in the Android framework. These results reaffirm

the utility of our main goal of automatically learning callback type-

state, and suggest that learning typestate can serve valuable roles

in documentation and validation of callback interfaces.

In 2 cases, the learned typestate and documented behavior dif-

fered in certain corner cases. We carefully examined the differences,

by framework source examination and manually writing test appli-

cations, and found that the learned typestate was correct and the

documentation was faulty. In 5 other cases, we believe the imple-

mented behavior is not the intended behavior, i.e., these are likely

bugs in the Android implementation. These discrepancies mostly

fall into two separate categories:

Incorrect documentation. In such cases, it turned out that the dis-

crepancy is minor and unlikely to produce bugs in client programs.

Race conditions. Several likely bugs were due to a specific category of

race conditions. These interfaces have (a) a callin to start an action

and a corresponding callback which is invoked when the action

is successfully completed; (b) a callin to cancel an already started

action and a corresponding callback which is invoked if the action

is successfully cancelled. When the start action and cancel action

callins are called in sequence, the expectation is that exactly one of

the two callbacks are called. However, when the time between the

two callins is small, we were able to observe unexpected behaviors,

including neither or both callbacks being invoked.

Start Cancelling

Running Cancelling’ Completed

execute() execute()

cancel()

cancel() onCancelled()

onCancelled()

cancel()

cancel()

onPostExecute()

Figure 3: Learned typestate of the AsyncTask class

6.2 Selected Experiments

Of our 16 benchmarks, we briefly explain 5 here. The remaining

experiments are discussed in the technical report [29]1.

MediaPlayer. This is the class from the example in Section 2. The

learned typestate differs from the existing documentation. The

learned typestate: (a) has the pause() callin enabled in the “play-

back completed” state, and (b) shows that onPrepared() is invoked

even after the synchronous callin prepare(). Though undocu-

mented, these behaviors are unlikely to cause any issues.

AsyncTask. The AsyncTask class turns arbitrary computations

into callback operations with progress tracking and results are de-

livered via callbacks. For our experiment, the computation is a sim-

ple timer. A constructed AsyncTask object performs its task when

it receives the execute() callin, and then either returns the results

with the onPostExecute() callback, or returns an onCancelled()
if cancel() is called first. The object is single-use; after it has

returned a callback it will accept no further execute() commands.

Our experiment revealed an unexpected edge-case: if execute()

is after cancel() but before the onCancelled() callback is re-

ceived, it will not throw an exception but will never cause the

callback task to be run. The learned interface is in Figure 3.

SpeechRecognizer. This class provides an example of uncontrol-

lable environmental non-determinism. The particular callback that

signals the end of the speech session—either an onResults() or an

onError()—is determined by the environment (in particular, the

sound around the phone during the test). In this case, to reduce the

system to a deterministic one we can learn, we supposed that the

state after an onResults() or onError() is the same and merged

the two callbacks into a single onFinished() symbol.

Our results revealed two interesting corner cases for the or-

dering of inputs. First, if an app calls cancel() between call-

ing startListening() and receiving the onReadyForSpeech()
callback (represented by our “starting” output symbol), calling

startListening() again will have no effect until after a certain

amount of time, as shown by the wait transition from state “Can-

celling” to “Finished”. Delays in readiness like this can be generally

considered bugs; if a system will not be ready immediately for in-

puts it should provide a callback to announce when the preparations

are complete, so as not to invite race conditions.

Our second corner case is where the app calls stopListening()
as the very first input on a fresh SpeechRecognizer. This will not

throw an exception, but calling startListening() at any point

after will fail, making the object effectively dead.

1http://arxiv.org/abs/1701.07842
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Class name LP LoC states Time (s) MQ EQ MQ per EQ BDist (needed)

AsyncTask 79 5 49 372 (94) 1 356 (0) 2 (1)

BluetoothAdapter 161 12 1273 839 (157) 2 420 (16) 2 (1)

CountDownTimer 94 3 134 232 (61) 1 224 (0) 2 (1)

DownloadManager 84 4 136 192 (43) 1 190 (0) 2 (1)

FileObserver 134 6 104 743 (189) 2 351 (8) 2 (1)

ImageLoader (UIL) 80 5 88 663 (113) 2 650 (33) 2 (1)

MediaCodec 152 8 371 1354 (871) 1 973 (482) 2 (1)

MediaPlayer 171 10 4262 13553 (2372) 5 2545 (384) 2 (1)

MediaRecorder 131 8 248 1512 (721) 1 1280 (545) 2 (1)

MediaScannerConnection 72 4 200 403 (161) 2 163 (57) 2 (1)

OkHttpCall (OkHttp) 79 6 463 839 (166) 2 812 (13) 2 (2)

RequestQueue (Volley) 79 4 420 475 (117) 1 460 (0) 2 (1)

SpeechRecognizer 168 7 3460 1968 (293) 3 646 (35) 2 (1)

SpellCheckerSession 109 6 133 798 (213) 4 374 (8) 2 (1)

SQLiteOpenHelper 140 8 43 1364 (228) 2 665 (6) 2 (2)

VelocityTracker 63 2 98 1204 (403) 1 1156 (0) 2 (1)

Table 1: DroidStar experimental results.

SQLiteOpenHelper. This class provides a more structured inter-

face for apps to open and set up SQLite databases. It has callbacks

for different stages of database initialization, allowing apps to per-

form setup operations only as they are needed. When a database is

opened with getWritableDatabase(), a callback onConfigure()

is called, followed by an onCreate() if the database didn’t exist

yet or an onUpgrade() if the database had a lower version number

than was passed to the SQLiteOpenHelper constructor, all followed

finally by an onOpen() when the database is ready for reading. The

database can then be closed with a close().
Our experiment observed the callbacks when opening databases

in different states (normal, non-existent, and out of date) and per-

forming the close() operation at different points in the sequence.

We found that once the getWritableDatabase() method is called,

calling close() will not prevent the callbacks from being run.

VelocityTracker. This class was a special case with no asynchro-

nous behavior; it was a test of our tool’s ability to infer traditional,

synchronous typestates. The class has a recycle() method that

we expected to disable the rest of the interface, but our tool found

(and manual tests confirmed) that the other methods can still be

called after recycling. The documentation’s warning that “You must

not touch the object after calling [recycle]” is thus not enforced.

7 RELATEDWORK

Works which automatically synthesize specifications of the valid

sequences of method calls (e.g. [3, 4, 18, 34]) typically ignore the

asynchronous callbacks.

Static analysis has been successfully used to infer typestates

specifications (importantly, without callbacks) [3, 23, 34]. The work

in [3] infers classical typestates for Java classes using L∗. In contrast,

our approach is based on testing. Therefore, we avoid the practical

problem of abstracting the framework code. On the other hand, the

use of testing makes our L∗ oracles sound only under assumptions.

Similarly, [19] uses L∗ to infer classical typestates, including ranges

of input parameters that affect behavior. However, their tool is

based on symbolic execution, and thus would not scale to systems

as large and complex as the Android Framework.

Inferring interfaces using execution traces of client programs

using the framework is another common approach [2, 4, 13, 17, 28,

38, 40, 41]. In contrast to dynamic mining, we do not rely on the

availability of client applications or a set of execution traces. The

L∗ algorithm drives the testing.

The analysis of event-driven programming frameworks has re-

cently gained a lot of attention (e.g. [6, 9, 10, 26]). However, none

of the existing works provide an automatic approach to synthesize

interface specifications. Analyses of Android applications mostly

focus on either statically proving program correctness or security

properties [6, 9, 15, 21, 39] or dynamically detecting race condi-

tions [8, 24, 27]. These approaches manually hard-code the behav-

ior of the framework to increase the precision of the analysis. The

callback typestate specifications that we synthesize can be used

here, avoiding the manual specification process.

Our work builds on the seminal paper of Angluin [5] and the

subsequent extensions and optimizations. In particular, we build

on L∗ for I/O automata [1, 32]. The optimizations we use include

the counterexample suffix analysis from [30] and the optimizations

for prefix-closed languages from [25]. The relation to conformance

testing methods [12, 16, 20, 22, 31] has been discussed in Section 4.3.

8 CONCLUSION

We have shown how to use active learning to infer callback types-

tates. We introduce the notion of distinguisher bound which take

advantage of good software engineering practices to make active

learning tractable on the Android system. Our method is imple-

mented in the freely available tool called DroidStar. This paper

enables several new research directions. We plan to investigate min-

ing parameters of callins from instrumented trace from real user

interactions, as well as the inference of structured typestates (for

instance, learning a typestate as a product of simpler typestates).
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