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INRIA Paris / CNRS / École Normale Supérieure / PSL* Research University

rival@di.ens.fr

Abstract

To infer complex structural invariants, shape analyses rely on expres-
sive families of logical properties. Many such analyses manipulate
abstract memory states that consist of separating conjunctions of
basic predicates describing atomic blocks or summaries. Moreover,
they use finite disjunctions of abstract memory states in order to
account for dissimilar shapes. Disjunctions should be kept small for
scalability, though precision often requires keeping additional case
splits. In this context, deciding when and how to merge case splits
and to replace them with summaries is critical both for precision
and efficiency. Existing techniques use sets of syntactic rules, which
are tedious to design and prone to failure. In this paper, we design a
semantic criterion to clump abstract states based on their silhouette,
which applies not only to the conservative union of disjuncts but also
to the weakening of separating conjunctions of memory predicates
into inductive summaries. Our approach allows us to define union
and widening operators that aim at preserving the case splits that are
required for the analysis to succeed. We implement this approach in
the MemCAD analyzer and evaluate it on real-world C codes from
existing libraries dealing with doubly-linked lists, red-black trees,
AVL-trees and splay-trees.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages-Program analysis

Keywords Static analysis, abstract interpretation, heap abstraction,
separation logics, disjunctions, silhouette, clumping of disjuncts
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1. Introduction

Over the last two decades, a wide spectrum of analyses have been
developed so as to compute invariants for programs manipulating
complex, unbounded data structures, and in order to prove memory
safety, structural invariance or functional properties. Shape analy-
ses [17, 35] focus on dynamic structures such as linked lists, trees
and graphs. Array analyses like [13] deal with contiguous structures
indexed by ranges of integers. Dictionary analyses [14, 16] handle
structures indexed using sets of keys. All these analyses need to use
expressive sets of predicates in order to summarize structures of
unbounded size, while keeping information about their shape.

Many of these works [9, 13, 14, 17] implicitly or explicitly
use separation [32] to describe sets of concrete memory states,
which means they divide memory states into regions and describe
each region individually using specific predicates. Typically region
predicates either describe a finite region very precisely (namely,
cell-by-cell), or summarize an unbounded region using an inductive
predicate [4, 9, 17, 38], a property that holds over a possibly empty
range of cells [13] or for a set of keys [14]. An abstract state
combines region predicates. For instance, [17] partitions memories
into list segments. Similarly, [13] partitions arrays into segments.
Thus, an abstract state can be viewed as a logical formula described
by a grammar of the form:

abstract states: m(∈ M) ::= p ∗ . . . ∗ p
region predicates: p(∈ P) ::= pe (exact description)

| ps (summary)

However, such a set of logical predicates is often not sufficient
to describe precisely a set of concrete memory states. Indeed,
when the program being analyzed may produce states with too
different structures, it becomes impossible to abstract them all into
a single separating conjunction of base predicates. For instance,
Fig. 1(a) shows a pair of concrete memory states that the above
predicates cannot describe precisely, yet that may arise in real
programs. Both memory states contain a list pointed to by variable
l, and two “cursors” x, y pointing somewhere in that list. The only
difference between these two memories is the order of the cursors
x, y. A code fragment localizing independently two elements in
the list will produce such states. Analyses like [9, 17] instantiate a
generic list segment predicate ls(a, b) to abstract a segment of list
starting at a and finishing with a pointer to b. Using this abstraction,
concrete memory state 1 can be abstracted by ls(l, x) ∗ ls(x, y) ∗
ls(y, 0x0), yet that predicate cannot abstract the second one in the
same time as x, y appear in the reverse order. Instead, static analyses
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Figure 1. Structures and disjunctions.

need to handle disjunctions of abstract states:

disjunctive abstract states: d(∈ D) ::= m ∨ . . . ∨ m
abstract states: m(∈ M) ::= p ∗ . . . ∗ p

Then, ls(l, x) ∗ ls(x, y) ∗ ls(y, 0x0) ∨ ls(l, y) ∗ ls(y, x) ∗

ls(x, 0x0) abstracts the memories of Fig. 1(a). Without a disjunction,
the information about either of the cursors would have to be dropped.

The same situation arises for other kinds of structures. For
instance, Fig. 1(b) displays two concrete memory states containing
a tree, with root t and two inside pointers. These shapes cannot be
described only using separation logic and tree inductive definitions:
indeed, in the first case, x points to a subtree of t and y points to a
subtree of x whereas in the second case the subtrees pointed to by x
and y appear in separate children of t.

In practice, disjunctions are a huge challenge to static analysis
tools. While the creation of new disjunctions occurs naturally when
the analysis needs to reason over operations that read or write into
summaries, letting the number of disjuncts grow makes the analysis
slower and consume more memory. Yet, getting rid of unnecessary
disjuncts turns out to be much harder a task than introducing them.
To clump a disjunctive abstract state d, an analysis needs:
1. to sort the disjuncts of d into sets of abstract states M0, . . . ,Mn,

such that all abstract states in Mi are similar enough;
2. to compute for each set Mi an abstract state mi that conserva-

tively over-approximates all the elements of Mi; this weakening
should infer how sets of region predicates can be folded into
summary region predicates.

Both steps are critical. The first step should determine the right set
of disjuncts: leaving too many disjuncts would make it impossible
to scale whereas excessively reducing the size of the disjunction
will prevent the weakening step from producing precise summaries.

Existing approaches all come with limitations and are often
challenged by the first step (disjunct sorting). Canonicalization
operators [35] solve this problem by using a finite set of “canonical”
abstract states, replacing each abstract state with a canonicalized
version of it. Although the analysis may use an infinite domain,

the precision of canonicalization outputs is limited by that of the
finite set of canonical abstract states. The canonicalization operator
of [17] and the join operators of [9, 38] utilize local rewriting
rules based on the syntax of abstract states. They cannot reason
on global shape properties, thus may miss chances to clump some
disjuncts. State partitioning [12] and trace partitioning [22, 33]
provide frameworks for sensitivity in static analysis, but do not
provide a general strategy to choose which disjunctions to preserve.
We observe that static strategies based on the control flow structure
of programs (conditions, loops, etc) are likely to produce inadequate
disjunct clumps as they ignore the shapes. On the other hand,
disjunctive completion [11] authorizes any disjunction of abstract
states (so that simplification is never required); however, it cannot
deal with infinite sets of abstract predicates and is prohibitively
costly when the set of abstract states is finite. Pruning disjunction is
thus a major challenge in many memory reasoning tools.

In this paper, we observe that semantic properties of abstract
states can help characterize the clumping of disjuncts. For instance,
the reason why the memory states of Fig. 1(a) cannot be abstracted
together lies in the order of the pointers. This information is de-
scribed by a very concise “silhouette” abstraction of the abstract
states themselves that focuses on the backbone of inductive struc-
tures. Indeed, if we let  be the relation that states that there is
a link path from one pointer to another, then l  x  y in the
first state and l y x in the second one; moreover, these path-
based silhouettes abstract the ls predicates (as well as other points-to
predicates). In essence, this technique uses a form of lightweight
canonicalization, but only as a guide to decide which disjuncts to
clump, whereas the analysis computations (including the abstract
join for clumping) still all take place in the initial, infinite lattice.
Similarly, the states of Figure 1(b) can be discriminated by a similar
abstraction of paths.

Therefore, we propose to let silhouette abstractions of the
abstract states guide the algorithms for clumping and weakening
disjuncts. We make the following contributions:
• we set up a path-based silhouette abstraction of abstract states to

capture shape similarities and guide weakening in Sect. 3;
• we design algorithms for the clumping (Sect. 4) and the widening

(Sect. 5) of disjunctive abstract states; and
• we implement the silhouette-guided algorithms in the MemCAD

analyzer [36] and assess their efficiency with the verification of
several real-world C libraries manipulating structures such as
doubly-linked lists, red-black trees, AVL trees, and splay trees.

2. Overview

In this section, we formalize the disjunct clumping problem and
describe the core contribution of the paper at a high level.

Clumping predicates based on their abstraction. As in the intro-
duction, we assume that an abstract state m ∈ M is a separating
conjunction p0 ∗ . . . ∗ pn of basic region predicates, and we con-
sider an analysis that computes an over-approximation for reachable
concrete memories represented as disjunctive abstract states of the
form d = (m0 ∨ . . . ∨ mk). We let join

M
denote a computable

join operation over the set of abstract states that over-approximates
unions of sets of memory states. Thus, it is always sound for the
analysis to replace a disjunctive abstract state (m0 ∨ m1) with a
non-disjunctive abstract state join

M
(m0,m1), yet this operation

may in general lose some information. Disjunct clumping aims at
identifying a partition of a finite set of disjuncts so that each compo-
nent of the partition can be joined using join

M
without a significant

loss of precision. For instance, as observed in the introduction,
joining into a single abstract state abstraction the concrete states
of Fig. 1(a) would not allow to represent all segments separately,
therefore such disjuncts should not be clumped together.
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1 t y p e d e f s t r u c t node_t {
2 s t r u c t node_t ∗l , ∗r ; // left, right child
3 i n t bal , d ; // balancing and content
4 } node ;
5
6 i n t insert_non_empty ( node ∗ t , i n t i ){
7 assume ( t != null ) ;
8 node ∗h = ( node ∗ ) malloc ( s i z e o f ( node ) ) ;
9 node ∗x , ∗y , ∗p , ∗q ;

10 h−>l = y = p = t ;
11 x = h ;
12 // phase 1: insertion point localization
13 whi le ( 1 ){
14 i f ( i < p−>d )
15 q = p−>l ;
16 e l s e
17 q = p−>r ;
18 i f ( q == null )
19 break ;
20 i f ( q−>bal != 0 ){
21 x = p ;
22 y = q ;
23 }
24 p = q ;
25 }
26 // phase 2: insertion at position p...
27 // phase 3: rebalancing at position x, y...
28 }

Figure 2. Excerpt of C source code for the AVL tree insert function.

In this paper, we propose an approach to disjunct clumping that
is based on the use of an abstraction of abstract states:
• we shall design a set of logical predicates S that describe the

silhouettes of abstract states in a compact and simple represen-
tation, and a computable silhouette equivalence relation ∼ that
defines which silhouettes are similar;

• we shall define a computable abstraction function θ : M −→ S

that maps an abstract state into its silhouette.
As an example, we defined  in the introduction, as a compact
abstraction of pointer chains, and used it to build silhouettes.

Using this notion of silhouette, we define the clumping algorithm
clump that inputs a disjunctive abstract state d and returns another
disjunctive abstract state clump(d) that over-approximates d with
at most as many (though usually fewer) disjuncts:
1. it inputs a disjunctive abstract state m0 ∨ . . . ∨ mn;
2. it computes θ(m0), . . . , θ(mn), and packs together abstract

states with the same image by θ up to equivalence relation ∼;
3. it reduces each group into a single abstract state, by repeatedly

applying join
M

, and returns a more compact disjunction.
In the rest of this section, we define an instance of clumping of
disjunctive predicates, by defining S, θ and ∼ and we demonstrate
how this approach enables the analysis of a complex code fragment,
while limiting the size of disjunctions.

Example: insertion into an AVL tree. In the following, we study
the verification of a function that inserts an element into an AVL
tree. AVL trees achieve balancing by enforcing that the heights
of two subtrees of a single node differ by at most one, and by
storing that difference on each node, so that insertion and removal
algorithms can rebalance subtrees incrementally, using “rotation”
operations. This property makes insertion and removal involved,
thus the preservation of structural invariants and absence of memory
errors (such as illegal pointer operations or leakage of subtrees) are
difficult to verify. In particular, the insertion and removal functions
need to distinguish many cases, which their verification should
also discriminate. Thus, verification algorithms will produce large
numbers of disjuncts, and could greatly benefit from clumping.
Fig. 2 shows an excerpt of an AVL insertion function. While the

A concrete state:

t

x
0x0
0x0

0x0
0x0

0x0
0x0

0x0

Abstract state:

t x
treeseg tree

Figure 3. Abstract states.

verification of the full code (from [37]) is presented in Sect. 6,
we study here a simplified version for the sake of clarity. We
only consider the handling of disjunctions of memory shapes; in
particular, we ignore the AVL trees numeric balancing constraints
(for our purpose, this restriction has no impact on the analysis).

The fragment in Fig. 2 handles the insertion into a non-empty
tree, and carries it out in three phases. First, the node p at which the
new element should be inserted is localized, as well as the deepest
edge (with source x and target y) in the tree where the balancing
property is locally broken by this insertion (indeed, this is the only
point where a rebalancing will actually be required, since a rotation
at this point will prevent any other balancing constraint from being
broken). Second, a new node is allocated and inserted at position
p. Finally, the rebalancing itself is performed. For concision, we
consider in detail the first phase only. This phase should compute
pointers p, x, y. To verify this function, the analysis should compute
invariants that characterize precisely the shape of trees, subtrees and
the relative positions of pointers p, x, y, t in all cases, including the
corner case where tree t consists of a single node, and the insertion
is actually done above it.

Abstract states and analysis. To express invariants over the code
of Fig. 2, the analysis needs summary predicates describing trees of
unbounded size as well as cursors inside trees. Thus, we assume a
pair of summary predicates tree and treeseg. More precisely, if α
denotes a symbolic address, we let tree(α) describe a well-formed
complete tree stored at address α. Similarly, we let treeseg(α, β)
describe a tree stored at address α missing a subtree at address β.
Therefore abstract values stand for separating conjunctions of points-
to predicates and of summary predicates. We use shape graphs, as
shown in Fig. 3 as a more intuitive representation, where nodes stand
for symbolic addresses (and the values of variables), and bold edges
stand for full summary predicates (edges with no destination node)
and for segment predicates (edges with a destination node). The
abstract state on the right side of the figure describes states where
t points to a tree, and x points to a (possibly non-strict) subtree of
the tree pointed to by t. It is made of the separating conjunction
of a treeseg segment summary and a tree summary. An example
concrete memory is shown in the left side of the figure.

Both summary predicates have a natural inductive structure. A
region abstracted by tree is either an empty tree or a tree with a
node and two disjoint subtrees. This remark boils down to a pair of
fold / unfold rules, that fully characterize tree (likewise treeseg
is defined by such a pair of rules):

α
tree

unfold

fold = 0x0

α ∨ α
α0

α1

l

r

tree

tree

The analysis performs a forward abstract interpretation [10],
starting from an abstract precondition that accounts for all the
possible valid call states, that is all the memory states where t
points to a non-empty, well-formed tree (described by tree). It
computes abstract post-conditions for each statement, and unfolds
summaries on-demand: for instance, in the first iteration p = t,
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Figure 4. Selected abstract states from the analysis of an insertion into an AVL tree (4 disjuncts out of 32).

and at line 14, the reading of field d of the node pointed to by p
requires unfolding the tree summary predicate attached to t. Such
unfoldings generate disjunctions of case splits. Conversely, join and
widening applied at loop head should fold back case splits, so as to
compute a loop invariant.

Silhouette abstraction. Fig. 4 describes a few abstract states that
are observed at line 25, at the exit of the first loop, and that illustrate
the challenges of clumping disjuncts. The figure shows abstract
states, the generic form of concrete memories they represent and
their silhouettes to be explained below. For concision, and as only
the relative positions of cursors matter, we focus on t, x, y and
omit fields d, bal, and variables h, p, q. Labels t, x, y decorate
the nodes that represent their value. Moreover, we show only a
sample of 4 among 32 disjuncts. First, abstract state m0 abstracts
memories where x, y were not advanced. Second, abstract state m1

abstracts memories where x was advanced to the root of the tree,
and the search continued in the left subtree. Third, abstract state
m2 abstracts memories where the search visits the left subtree of
t, x is advanced into that subtree, and y is the left child of x. Last,
abstract state m3 describes a similar condition as m2 but when the
search visits the right subtree of t and x is a left child. Some of
these abstract states are very similar to each other and can be joined
to reduce the cost without significantly affecting the precision of the
analysis. Indeed, x and y occupy the same relative positions in m2

and m3; moreover, in both cases the two cursors point to subtrees
of t. Thus, both m2 and m3 can be approximated by an abstract
state with a segment from t to x and where y is the left child of
x. Furthermore, m1 can also be weakened similarly: the relative
positions of x, y are the same, and the only minor difference is that
x is not a strict subtree of t since t = x, but this equality can also be
described by an (empty) segment. On the other hand, m0 abstracts
very different memories, where x is not a subtree of t, so it cannot
be described with a segment from t to x. Any abstract state that over-
approximates both m0 and m1 would discard all information about

either t or x, which would make the proof of structural preservation
impossible. Therefore, an ideal clumping would join m1,m2,m3

together but keep m0 separate.
Intuitively, abstract states where the relative positions of cursors

t, x, y into the tree are similar can be clumped together with
no severe precision loss. To capture this intuition, the notion of
silhouette shown in the last column of Fig. 4 retains only the relative
positions of t, x, y and the access paths between them. As access
paths may be of unbounded length, we abstract them with regular
expressions describing sequences of fields dereferenced between
nodes. For instance, the silhouette s0 of m0 boils down to a single
edge, with a single path labeled by l. Even the more complex m3 is
characterized by only two edges respectively labeled by r·(l+r)⋆ ·l
(between t and x) and by l (between x and y).

Clumping disjuncts. Silhouettes make the dissimilarity of m0

with the other states in Fig. 4 obvious, due to the incompatible
order of cursors. However, we can also see that the silhouettes of m2

and m3, while not syntactically identical are actually equal up-to a
generalization of the path regular expression for the left edge into
(l + r)⋆. This generalization matches the fact that any structure
segment can be weakened into a treeseg predicate, whatever the
sequence of “left-right” branches it encompasses:

s∼ =
t x y

(l+ r)⋆ l

The silhouette of m1 also corresponds to a special case of s∼.
Therefore, we let ∼ denote the similarity of silhouettes up-to
generalization of access paths. With this notation, we have:

s0 6∼ s1 s0 6∼ s2 s0 6∼ s3 s1 ∼ s2 ∼ s3

Therefore, the groups computed here are {m0}, {m1,m2,m3},
and the four disjuncts of Fig. 4 are clumped into a disjunctive
abstract state composed of only two disjuncts m0 and m1,2,3. The
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Figure 5. Weakened abstract state m1,2,3.

computation of the m1,2,3 (that we discuss in the next paragraph)
may use any weakening algorithm for abstract states, such as
canonical abstraction [35], canonicalization of symbolic heaps [17],
or shape graph join [9].

In essence, clumping relies on a weak canonicalization [35] that
returns silhouettes, and then selects groups based on an equivalence
relation over the set of silhouettes. To ensure the termination of
abstract iterates over loops, the finiteness of the clumping relation
∼ is required (i.e., it should have a finite set of equivalence classes),
though the set of silhouettes may still be infinite. However, clumping
may be performed at other points than loop heads (in order to
shrink abstract states, without discarding any information), and
then it does not require a finite ∼. In this point of view, clumping
provides a more flexible approach to the handling of disjunctions
than canonicalization, since it does not need to project abstract states
into a finite set of predicates, and since it may still take advantage
of precise binary operators for weakening.

Clumping region predicates. The information computed in silhou-
ettes also provides a guideline for weakening abstract states. Indeed,
let us consider silhouette s∼, that is weaker than the silhouettes of
m1,m2,m3. As it contains an edge labeled by (l+ r)⋆ between t
and x, it suggests weakening the fragment of these abstract states
that are between t and x into a treeseg segment predicate. The
soundness of such a weakening can be verified by checking entail-
ment of a fragment of m1 (resp., m2,m3) and a treeseg predicate.
The resulting weaker abstract state m1,2,3 is shown in Fig. 5. Here,
the role of the silhouette is to provide guidance on how abstract states
may be weakened. The advantage of this view to the computation of
weakening is to benefit from global semantic information about the
structure of abstract states that would be neglected by weakening
operators based on syntactic rules only (like the canonical heap
abstraction of [17] and the join of [9]).

3. Silhouette Abstraction and Guided Weakening

In this section, we formalize silhouettes, and show that they provide
a useful abstraction to reason about the weakening of abstract states.

3.1 Preliminaries: Memories and Abstract States

Before we formalize silhouettes, we define memories and abstract
states. We let X denote a set of pointer variables and V denote a
set of values (that includes numeric addresses). We let fields (noted
as l, r, . . .) denote both field names and offsets. A memory state
σ ∈ Σ is a partial function from addresses and variables to values.
We let σ⌈X (resp., σ⌈H) denote the restriction of σ to variables (resp.,
heap addresses). If x (resp., a) is a variable (resp., an address), we
write σ(x) (resp., σ(a)) for the content of variable x (resp., the cell
of address a). This basic memory model does not allow computing
the address of a variable, but a more general definition based on a
classical heap and environment pair could be used without changing
the principle of our approach.

An abstract state describes a set of concrete memory states.
It is either ⊥ (denoting ∅) or a separating conjunction of region
predicates that abstract separate memory regions [32] in conjunction
with numerical constraints such as equalities and disequalities. The
syntax of abstract states is given in Fig. 6. Abstract states utilize

n ::= α (α ∈ A)
| x (x ∈ X)

c ::= n⊙ 0x0 (⊙ ∈ {=, 6=})
| n = n′

p ::= emp (empty memory)
| n · f 7→ n′ (single memory cell)
| ind(n) (inductive summary predicate)
| indseg(n, n′) (segment summary predicate)

m ::= (p ∗ . . . ∗ p) ∧ (c ∧ . . . ∧ c)
d ::= m ∨ . . . ∨ m

JxK(σ, ν) = σ(x) JαK(σ, ν) = ν(α)

γC(n⊙ 0) = {(σ, ν) | JnK(σ, ν)⊙ 0}
γM(n · f 7→ n′) = {(σ, ν) | σ⌈H = [JnK(σ, ν) + f 7→ Jn′K(σ, ν)]}

γM(ind(n)) =
⋃

{γM(m) | ind(n)
unfold
−→ m}

γM((p0 ∗ . . . ∗ pk) ∧ (c0 ∧ . . . ∧ cl)) =
{(σ, ν) | ∃σ0, . . . , σk, σ⌈H = σ0⌈H ⊎ . . . ⊎ σk⌈H ∧
∀i, (σi⌈X = σ⌈X ∧ (σi, ν) ∈ γM(pi)) ∧ ∀j, (σ, ν) ∈ γC(cj)}

γD(m0 ∨ . . . ∨ mn) = γD(m0) ∪ . . . ∪ γD(mn)

Figure 6. Non-bottom abstract states and concretization main cases.

a set A = {α, β, . . .} of symbolic addresses to abstract values
and heap addresses. A node n is either a variable x or a symbolic
address α. A region predicate is either emp describing an empty
region, a points-to predicate n · f 7→ n′ (that describes a heap
memory cell at base address n with offset f and with content n′), or
a summary predicate ind(n) describing a full inductive structure
or indseg(n, n′) for a (possibly empty) inductive segment from
address n to n′. This set of abstract states is parameterized by a
user-supplied inductive predicate ind, that characterizes a family of
data structures of interest and serves as a template that the analysis
will instantiate. It is specified by a disjunction of cases, which boil
down to separating conjunctions of points-to and inductive summary
predicates (e.g., lists, doubly-linked lists, trees, and trees with parent
pointers can be expressed this way). Segment predicate indseg
stands for the segment version of ind and describes ind-structures
with one “hole” (i.e., one missing substructure), and can also be
defined by induction. The ls list segment predicate of [17] is an
inductive predicate. The tree predicate used in Sect. 2 can be
defined by induction as well:

tree(n) ::= emp ∧ n = 0x0
∨ n · l 7→ αl ∗ n · r 7→ αr ∗ n · bal 7→ αb

∗ n · d 7→ αd ∗ tree(αl) ∗ tree(αr) ∧ n 6= 0x0

The inductive definition of treeseg(n, n′) has three cases: either
the segment is empty and n = n′, or it is non-empty and n′ is in the
left subtree of n or it is non-empty and n′ is in the right subtree of n.

Abstract states can also be viewed as shape graphs. For instance,
Fig. 3 depicts as a shape graph the abstract state treeseg(t, x) ∗
tree(x).

The logical meaning of an abstract state m is defined by its
concretization γM(m) ⊆ Σ× (A→ V), as a set of pairs made of a
memory state σ and a function ν that maps each symbolic address
or variable into its concrete counterpart in σ. The bottom of Fig. 6
gives the definition of γM(m) and γD(d) in the main cases. Symbolic
addresses are existentially quantified, and thus the concretization
of abstract states is unchanged by renaming of symbolic addresses.
Similarly, swapping or merging equal nodes preserves the meaning
of abstract states.

Abstract transfer functions compute post-conditions for basic
statements like assignments, allocation and deallocation operations
in a local manner [17]. As an example, we consider abstract
state m = tree(t) ∧ t = x ∧ t 6= 0x0 and assignment
x = x->l. As summary tree(t) is read, it needs to be unfolded.
Due to the side constraint t 6= 0x0, the only disjunct created is
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t · l 7→ α ∗ t · r 7→ β ∗ tree(α) ∗ tree(β) ∧ t = x. Then, the
analysis boils down to a local update, which produces the abstract
post-condition t · l 7→ x ∗ t · r 7→ β ∗ tree(x) ∗ tree(β).

3.2 Silhouettes

Abstract states provide a precise description of sets of concrete
states. Even summarized regions are characterized by inductive
predicates that convey very detailed information about their structure.
The purpose of silhouettes as presented in Sect. 2 is to identify
similarities among abstract states without looking into the details of
the shapes of the structures. Thus, we define silhouettes as graphs,
yet with edges that retain less information than region predicates.
As remarked in Sect. 2, information about reachability on pointer
paths is relevant to the characterization of groups of abstract states
that could be clumped together. Paths can be described using basic
regular expressions over fields. We let E denote the set of the regular
expressions that satisfy the grammar e ::= ǫ | f | (f0+ . . .+fn)

⋆ |
e · e which are respectively adequate to describe equalities, points-to
edges, segment edges, and sequences of edges. This leads us to the
following definition:

Definition 1 (Silhouette). A silhouette s is a graph defined by a set
of nodes N ⊆ X ⊎ A, and a set of edges E that are labeled by
regular expressions in E (we write (n, e, n′) for such an edge).

A silhouette collects a conjunction of reachability constraints
over paths. Thus, the concretization γS(s) of a silhouette s is
defined as the set of all pairs (σ, ν) that satisfy all the constraints
defined by the edges of s. Deciding whether (σ, ν) satisfies the
constraint defined by an edge (n, e, n′) boils down to evaluating the
values described by n, n′ into values a, a′ and checking whether
dereferencing a sequence of fields described by e starting from a
allows to reach a′. Using the semantics of nodes JnK(.) (Fig. 6), the
following set of rules formalizes this:

(σ, ν) � JnK(σ, ν), e, Jn′K(σ, ν)

(σ, ν) � (n, e, n′) (σ, ν) � a, (f0 + . . .+ fn)
⋆, a

σ(a+ f) = a′

(σ, ν) � a, f, a′

∃i, (σ, ν) � σ(a+ fi), (f0 + . . .+ fn)
⋆, a′

(σ, ν) � a, (f0 + . . .+ fn)
⋆, a′

(σ, ν) � a, ǫ, a

∃a′′, (σ, ν) � a, e, a′′ ∧ (σ, ν) � a′′, e′, a′

(σ, ν) � a, e · e′, a′

For example, the concrete memory shown in Fig. 3 can be described
by the silhouette shown below with its graphical representation:

s = {(t, (l+ r)⋆, x)} t x
(l+ r)⋆

3.3 Computation of Silhouettes

To allow silhouettes to assist in clumping abstract states, it is cru-
cial to have an efficient way to compute them. First, empty regions,
equalities / disequalities to 0x0, and full inductive predicates (of the
form ind(α)) do not contribute to the silhouette. Second, a points-to
edge n · f 7→ n′ simply contributes an edge (n, f, n′). Last, a seg-
ment predicate indseg(n, n′) contributes an edge (n, E(ind), n′),
where E(ind) denotes the set of paths that can be induced by a
segment of inductive predicate ind: in the case of the tree predi-
cate of Sect. 2, E(tree) = (l + r)⋆. Moreover, the silhouette of
an abstract state is obtained by collecting the contribution of each
region predicate. Therefore the silhouette of an abstract state can be
defined as a set of edges computed by the function Π defined by:

Π(n⊙ 0x0) = ∅ Π(n = n′) = {(n, ǫ, n′)}
Π(emp) = ∅ Π(n · f 7→ n′) = {(n, f, n′)}
Π(ind(n)) = ∅ Π(indseg(n, n′)) = {(n, E(ind), n′)}
Π(p0 ∗ . . . ∗ pk ∧ c0 ∧ . . . ∧ cl) =

Π(p0) ∪ . . . ∪ Π(pn) ∪ Π(c0) ∪ . . . ∪ Π(cn)

This translation function is sound as it returns a silhouette that
describes more memories than the abstract state it is applied to:

Theorem 1 (Soundness). The silhouette translation function Π is
sound: for all memory state m, γM(m) ⊆ γS(Π(m)).

The proof proceeds by induction over abstract states.
Silhouettes describe conjunctions of constraints, thus can be

weakened into coarser approximations of sets of memory states,
either by dropping or by weakening some constraints. Given a
silhouette s = (N,E) and a set of nodes N ′ ⊆ N , we let the
restriction of s to N ′ be the silhouette s⌈N′ defined by the set

of nodes N ′ and the edges obtained as acyclic concatenations of
edges of s forming paths from N ′ to N ′. This weakening effectively
allows us to ignore some nodes. For instance, if X ⊆ X is a set of
variables that play a special role, then Π(m)⌈X is a silhouette of m
that will only retain information about the variables in X . We note
this silhouette Π(m, X).

Example 1 (Silhouette computation). We consider the abstract
state m of Fig. 3. Then, Π(m) is the silhouette shown at the end of
Sect. 3.2. Moreover, Π(m, {t}) is ∅.

3.4 Silhouette-based Weak Entailment Check

The core purpose of the silhouette abstraction is to determine when
abstract states are similar enough to be joined together without a sig-
nificant loss in precision. Since join computes over-approximation
of several abstract states, we first study the relationship between
entailment check of abstract states and the silhouettes.

Entailment check for abstract states. Entailment check of ab-
stract states is usually based on sets of proof rules that establish
inclusion locally and express separation, reflexivity, and unfolding
of inductive summary predicates [4, 9, 17]. The rules below describe
such a typical system (for clarity, numerical constraints are elided):

m is of the form n · f 7→ n′ or ind(n) or indseg(n, n′)

m ⊑M m

m′ is of the form ind(n) or indseg(n, n′) and m′ unfold
−→ m

m ⊑M m′

m ⊑M ind(n′)

indseg(n, n′) ∗ m ⊑M ind(n)

m0 ⊑M m′
0 m1 ⊑M m′

1

m0 ∗ m1 ⊑M m′
0 ∗ m′

1

An entailment checking algorithm noted leq
M

implements a proof
search based on these rules. It is in general sound and incom-
plete: when leq

M
(m0,m1) returns true, then m0 ⊑M m1 thus

γM(m0) ⊆ γM(m1), yet the reverse implication does not hold in
general. Indeed, complete proof search algorithms with backtracking
are expensive. Moreover, completeness can in general not be ensured
in the presence of more complex sets of numerical constraints [9]
than in the restricted set of abstract states used here.

Silhouette entailment check. As an alternative to the abstract state
entailment check, we propose to first use a weaker and cheaper
entailment check on silhouettes, which is based on a classical
inclusion of constraints. We let L(e) denote the language of e.

Definition 2 (Silhouette entailment check). Let s0, s1 ∈ S.
We let leq

S
(s0, s1) return true if and only if for all edge

(n, e, n′) of s1 there exists a (possibly empty) sequence of edges
(n0, e1, n1), . . . , (nk−1, ek, nk) in s0 such that n0 = n, nk = n′

and L(e1 · . . . · ek) ⊆ L(e) (or, if the sequence is empty, ǫ ∈ L(e)).

Theorem 2 (Soundness). The entailment check leq
S

is sound:
given s0, s1 ∈ S, if leq

S
(s0, s1) = true, then γS(s0) ⊆ γS(s1).

The most important result on silhouette entailment check is that
it is weaker than the rules for abstract states entailment:
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Theorem 3 (Weak entailment). Let m0,m1 ∈ M. Then:

m0 ⊑M m1 =⇒ leq
S
(Π(m0),Π(m1)) = true.

The proof of Th. 2 follows from the structure of silhouette
entailment check whereas Th. 3 can be proved by induction on
the derivations of ⊑M.

From this theorem follows the core principle of our approach:
while the most direct way to check if γM(m0) ⊆ γM(m1) con-
sists in applying the (fairly expensive) leq

M
(m0,m1) proof

search algorithm, an alternate approach consists in computing
leq

S
(Π(m0),Π(m1)) first and computing leq

M
only when leq

S

returns true. Indeed, if leq
S

returns false, then leq
M

will also
definitely return false, though at a much higher computational cost.

Example 2 (Entailment). We consider the example given in
Sect. 2, and the states and silhouettes defined in Fig. 4. Then,
leq

S
(s0, s1) = false, and indeed m0 ⊑M m1 does not hold. More-

over, leq
S
(s1, s∼) = true and m0 ⊑M m1,2,3 holds. On the other

hand, among the states in Fig. 4, there is no case where leq
S

returns
true and ⊑M does not hold.

4. Clumping Disjunctions of Abstract States

Silhouettes offer a weak characterization for feasible weakenings.
We now put this characterization to work in order to determine when
and how disjunctive abstract states may be clumped, without causing
a severe loss in precision.

4.1 Existing Abstract States Join Operators and Challenges

To clump a disjunctive abstract state, the analysis should identify
disjuncts that can be weakened into the same, precise result. This
corresponds to a join operator over finite sets of abstract states.
Thus, we first study how a join [9, 38] can be computed for a
pair of abstract states m,m′. First, in order to take advantage of
separation [32] and local reasoning, abstract states m,m′ should be
split into separating conjunctions of regions m = (m0 ∗ . . . ∗ mk)
and m′ = (m′

0 ∗ . . . ∗ m′
k) such that mi and m′

i describe
“similar” shapes. Second, for each pair mi,m

′
i a local structural

rule should produce a weaker m⊔
i , such that inclusions mi ⊑M m⊔

i

and m′
i ⊑M m⊔

i hold. Then, a valid over approximation of both m
and m′ is defined by m⊔ = m⊔

0 ∗ . . . ∗ m⊔
k . During this second

phase, two main kinds of rules are used:
• Weakening guided by existing region predicates. The first set

of rules searches for cases where mi ⊑M m′
i (resp. m′

i ⊑M mi)
holds so that a valid choice for m⊔

i is m′
i (resp., mi). The most

common case is when mi = m′
i. Another important case is when

m′
i = ind(α) and mi ⊑M ind(α); then mi gets weakened into

a summary predicate, that was already present in m′.
• Synthesis of summary predicates. The second set of rules syn-

thesizes new summary predicates, that weaken specific patterns.
For instance, the introduction of a segment predicate is a particu-
lar case of summary predicate synthesis, that weakens an empty
region into a segment:

mi = (emp ∧ α = β)
m′

i ⊑M indseg(α, β)

}

 m⊔
i = indseg(α, β)

Example 3 (Abstract states join). As an example, we let m =
(tree(x) ∧ t = x) and m′ = (t · l 7→ x ∗ t · r 7→ α ∗

tree(x) ∗ tree(α)). Then, m′ can be split into two regions: first,
tree(x) is also present into m; second, the remainder is included
into treeseg(t, x). Therefore, these two states can be joined into
(treeseg(t, x) ∗ tree(x)).

In practice, the splitting phase and the application of weakening
rules are performed concurrently, as the search for a good splitting
requires insight about what rules may apply.

t

v

ul

r

tree

tree

t u v
treeseg treeseg tree

Figure 7. Join of abstract states and splitting.

Challenges. The main difficulty of the abstract join stems from the
large search space that needs to be examined to determine whether
an adequate splitting can be found. A first caveat is that in certain
cases, there exists no splitting that produces a precise common
approximation using the lattice defined in Fig. 6: the configurations
of Fig. 1(a) and Fig. 1(b) provide examples of such pairs of states.
Even when a solution exists, it may be non-unique, and there may be
no universally best solution, as illustrated by the following example.

Example 4 (Non-unique splitting). We let m,m′ be defined by:

m = (t · l 7→ v ∗ t · r 7→ α ∗ tree(v) ∗ tree(α) ∧ u = t)
m′ = (t · l 7→ v ∗ t · r 7→ α ∗ tree(v) ∗ tree(α) ∧ u = v)

There are two possible splittings (results are shown in Fig. 7):
1. pairing each of the four edges of m with an edge of m′ produces

a join (shown in the left of Fig. 7) with very precise information
about t, v, but that discards all information about u;

2. introducing an empty segment between u and t in m and another
empty segment between u and v in m′ produces a result (shown
in the right of Fig. 7) where the fact that u is a cursor in t is
preserved, but the information that t · l points to v is lost.

In this situation, to make the best clumping choice, the analysis
should take into account future uses of t, u, v. If u is unused after
the point in the program where clumping is performed, the first
splitting is the best. If the fact that u points somewhere in the tree
matters, the second splitting is better. Last, if the fact that v is a child
of t and the fact that u points somewhere in the tree both matter,
then the best clumping strategy is not to join m,m′.

Unary weakening operators such as canonicalization [17] work
in a similar manner (though without the guidance of a second
argument), and face the same difficulties.

Silhouette-guided clumping of abstract states. In the rest of this
section, we demonstrate that the silhouette abstraction brings a
twofold gain to the clumping of abstract states. First, it allows
us to rule out cases where no “good” splitting can be found,
while taking into account information about the analysis goal
(Sect. 4.2). Second, once a good splitting is found, it enhances
the weakening rules that can be applied and eases the introduction
of summary predicates (Sect. 4.3). Both of these advantages follow
from the weak entailment decided at the silhouette level as shown in
Theorem 3. The clumping proposed below is general and will also
be used for widening in Sect. 5.

4.2 Clumping Silhouettes

While the silhouettes of abstract states defined in Sect. 3 provide a
weak entailment check, they still adhere too closely to the structure
of abstract states to highlight all possibilities for clumping. For
instance, Fig. 8 shows excerpts m′

2,m
′
3 of the abstract states m2,m3

of Fig. 4, and the silhouettes of m′
2,m

′
3 are not equal, even though

these abstract states could be clumped, as discussed in Sect. 2:

Π(m′
2) = {(t, l, α0), (α0, (l+ r)⋆, x), (t, r, α1)}

Π(m′
3) = {(t, r, β1), (β1, (l+ r)⋆, β2), (β2, l, x), . . .}

Taking advantage of the analysis goal. As remarked in Sect. 3.3,
silhouettes can be made more concise and relevant by collecting
only nodes that play an important role in the rest of the analysis. In
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Figure 8. Abstract states candidate for clumping.

the case of the analysis shown in Sect. 2, variables t, x, y are needed
in the rest of the analysis of the program, and there is no further
dereference of fields of t, thus the edges of the form (t, l, . . .)
and (t, r, . . .) are not relevant, and could be folded into summary
predicates without hurting the analysis.

Thus, to perform a precise clumping, one restricts the silhouette
nodes to those that stand for live variables, i.e., variables that may be
read later in the program being analyzed before they are overwritten
(as computed by a standard liveness compiler analysis [1]).

Example 5. If we let X = {t, x}, we obtain:

Π(m′
2, X) = {(t, l · (l+ r)⋆, x)}

Π(m′
3, X) = {(t, r · (l+ r)⋆ · l, x)}

Though these silhouettes are not equal, they both resemble that of
an abstract state with a segment between t and x.

Generalizing silhouettes. To recognize silhouette similarities in
configurations such as that of Ex. 5, constraints should be gener-
alized so as to make segment patterns easier to recognize at the
silhouette level. Since segments correspond to regular expressions
of the form (f0 + . . .+ fk)

⋆, the following generalization function
makes such patterns appear more prominently:

Definition 3 (Silhouette generalization). The generalization φ(e) of
a regular expression e of the form f′0 · . . . ·f

′
m ·(f0+ . . .+fk)

⋆ ·f′′0 ·
. . . · f′′n, where {f′0, . . . , f

′
m, f′′0 , . . . , f

′′
n} ⊆ {f0, . . . , fk}, is the

regular expression φ(e) = (f0 + . . .+ fk)
⋆. For all other regular

expressions e, we let φ(e) = e.
The generalization of a silhouette s is obtained by replacing any

edge (n, e, n′) of s by edge (n, φ(e), n′). It is noted Φ(s).

This operation defines a weakening over silhouettes, since for all
silhouettes s, we observe that γS(s) ⊆ γS(Φ(s)).

Example 6. After generalization, we obtain:

Φ(Π(m′
2), {t, x}) = {(t, (l+ r)⋆, x)} = Φ(Π(m′

3), {t, x})

Clumping relation. We now consider a criterion for the computing
candidate groups of abstract states for clumping based on silhouettes.
As observed in Sect. 4.1, a large part of the join rules, implicitly
rely on ⊑M. Therefore, leq

S
can be used to prune out abstract state

entailment checks that do not hold in the silhouette (Th. 3). Though,
we note that, during the computation of a single join of two abstract
states m,m′, such weakening rules may need to be applied on both
sides. Thus, we need a symmetric characterization of situations
where a weakening may be performed either in m, in m′ or in both,
which is the purpose of relation ⊲⊳:

Definition 4 (Silhouette association relation). Let s0, s1 be two
silhouettes with the same set of nodes N . We let s′0 = Φ(s0) and
s′1 = Φ(s1). We write s0 ⊲⊳ s1 if and only if there exist N0, N1 such
that N = N0 ∪ N1 and:

s′0 = s′0⌈N0
∪ s′0⌈N1

∧ leq
S
(s′0⌈N0

, s′1⌈N0
) = true

∧ s′1 = s′1⌈N0
∪ s′1⌈N1

∧ leq
S
(s′1⌈N1

, s′0⌈N1
) = true

This relation is symmetric and reflexive, but not transitive:

Example 7. Let s0, s1, s2 be defined by:

s0 = {(x, ǫ, y), (y, f⋆, z)} s2 = {(x, ǫ, y), (y, f, z)}
s1 = {(x, f⋆, y), (y, ǫ, z)}

Then, s0 ⊲⊳ s1 and s0 ⊲⊳ s2 hold, but s1 ⊲⊳ s2 does not hold.

The silhouette association relation soundly characterizes the
cases where a precise join can be computed using rules that perform
weakening guided by existing predicates:

Theorem 4 (Silhouette association and weakening). Let m,m′

be two abstract states. We assume that m = m0 ∗ m1 and
m′ = m′

0 ∗ m′
1. Then:

m0 ⊑M m′
0 ∧ m′

1 ⊑M m1 =⇒ Φ(Π(m)) ⊲⊳ Φ(Π(m′))

This result is a direct consequence of Theorem 3. It implies
that, whenever a join can be computed by weakening part of m into
predicates present in m′ and part of m′ into predicates present in m,
then relation ⊲⊳ holds. The contraposition entails that, when ⊲⊳ does
not hold, no precise join can be found using only rules that weaken
abstract states based on existing predicates. Therefore, Th. 4 will
prevent clumping from attempting to compute some joins that will
fail, but not all. Sect. 6 provides evidence that the characterization it
provides is actually tight. Moreover, this result does not immediately
apply to the cases where join requires the synthesis of summary
predicates; Sect. 4.3 discusses such cases.

Example 8 (Clumping relation). We consider the states of Ex. 4.
If X = {t, v}, then Π(m, X) = {(t, l, v)} = Π(m′, X). Thus,
Φ(Π(m, X)) ⊲⊳ Φ(Π(m′, X)) holds. As observed in Ex. 4, joining
these two states is precise with respect to X .
On the other hand, if X = {t, u, v} (we observed that join-
ing them would incur a precision loss), we obtain Π(m, X) =
{(t, ǫ, u), (u, l, v)} and Π(m′, X) = {(t, l, v), (u, ǫ, v)}, and
Φ(Π(m, X)) ⊲⊳ Φ(Π(m′, X)) does not hold.

4.3 Silhouette Guided Join of Abstract States

We now show that silhouettes may help synthesizing new summary
predicates. For instance, when a segment predicate can be synthe-
sized, it is always done after checking with relation⊑M that the new
predicate actually defines a weakening of the arguments. Since Th. 3
offers a weak entailment check, the silhouette can be used in order
to guide introduction of segment predicates.

Definition 5 (Silhouette join). We define the join of silhouette edges
(n0, e, n1) and (n0, e

′, n1) as the edge (n0, e
⊔, n1) where e⊔ keeps

the same left side as e and e′ and joins the other part into the smallest
and more general regular expression of the form (f0 + . . .+ fk)

⋆.
Given two silhouettes s = (N,E), s′ = (N ′, E′), we define their
silhouette join noted join

S
(s, s′) as the silhouette s⊔ = (N⊔, E⊔)

such that N⊔ = N ∩ N ′ and E⊔ collect the pairwise join of the
edges of s⌈N⊔ and of s′⌈N⊔ .

When two abstract states can be joined into a segment, their
silhouette is a refinement of the silhouette of a segment (by Th. 3):

Theorem 5 (Guided segment synthesis weak characterization). Let
m,m′ be two abstract states such that m ⊑M indseg(n0, n1) and
m′ ⊑M indseg(n0, n1), then

γS(joinS
(Π(m, {n0, n1}),Π(m′, {n0, n1})))
⊆ γS({(n0, E(ind), n1)})
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input: disjunctive abstract state m0 ∨ . . . ∨ mn

set of live variables X
output: clumped disjunctive abstract state m′

0 ∨ . . . ∨ m′
k

0 : s0 ← Π(m0, X); . . . ; sn ← Π(mn, X);
1 : s′0 ← Φ(s0); . . . ; s

′
n ← Φ(sn);

2 : computation of relation ⊲⊳ over s′0, . . . , s
′
n

3 : and of the connected components S0, . . . , Sk of ⊲⊳
4 : for each connected component Sj of ⊲⊳
5 : sort the elements of Sj into s′i0 ≺ . . . ≺ s′il
6 : such that ∀p, s′ip ⊲⊳ s′ip+1

7 : m′
j ← mi0 ; s

⊔ ← si0 ;
8 : for p = 1 to l
9 : s⊔ ← join

S
(s⊔, sip);

10 : m′
j ← join

M
(m′

j ,mip , s
⊔);

Figure 9. Clumping algorithm clump.

We derive the semantic guided segment introduction rule below:

let s = Π(m, {n0, n1}) and s′ = Π(m′, {n0, n1})
if join

S
(s, s′) = (f0 + . . .+ fk)

⋆

and leq
S
(join

S
(s, s′), {(n0, E(ind), n1)}) = true,

then if leq
M
(m, indseg(n0, n1)) = true

and leq
M
(m′, indseg(n0, n1)) = true,

then, join
M
(m,m′) = indseg(n0, n1)

Intuitively, this rule will only attempt to synthesize a segment when
the join of the silhouettes can be weakened into the silhouette of a
segment. Only in that case will it call the shape inclusion checking
function leq

M
to determine if a segment can be introduced. This

rule supersedes the classical syntactic rule and avoids many attempts
to run the costly leq

M
, which would fail (since leq

S
provides

a cheaper, weak entailment test). In the following, we let join
M

denote a join operator for abstract states, that takes as input as a
third argument for a silhouette that it uses as a guide to introduce
segments.

Example 9. We consider the abstract states m′
2,m

′
3 of Fig. 8. Then:

s⊔ = join
S
(Π(m′

2),Π(m′
3)) = {(t, (l+ r)⋆, x)}

Thus, the above rule applies, and synthesizes a segment predicate:

join
M
(m′

2,m
′
3, s

⊔) = treeseg(t, x)

This result is beyond the reach of algorithms based on local syntactic
rules such as those of [9, 38].

4.4 Clumping Abstract States

Fig. 9 summarizes the algorithm clump for clumping abstract
states. It takes as input a disjunctive abstract state and the set of
live variables at the current location in the program being analyzed.
It first computes the silhouette of all the abstract states and the
generalized form of these silhouettes. The generalized forms are
used in order to compute ⊲⊳. The groups of abstract states to be
clumped together are defined by the connected components of this
relation and is denoted ∼ in Sect. 2. Also the silhouette abstraction
denoted θ(m) in Sect. 2 is computed as Φ(Π(m, X)). For each
group, relation ⊲⊳ suggests a sequence of abstract state joins, that are
expected to preserve silhouettes. These abstract state joins utilize the
silhouettes s0, . . . , sn in order to enable semantic-guided synthesis
of summary predicates as shown in Sect. 4.3.

This clumping algorithm is sound: it returns a disjunctive abstract
state that over-approximates m0, . . . ,mn.

Theorem 6 (Clumping soundness). For all disjunctive abstract
state m0 ∨ . . . ∨ mn and for all set of variables X , we have:

γD(m0 ∨ . . . ∨ mn) ⊆ γD(clump(m0 ∨ . . . ∨ mn, X))

Following Th. 4 and Th. 5, this algorithm will not attempt to
compute abstract state joins that will not succeed to produce a
precise result in the silhouette level. As observed previously, this
does not mean all abstract state joins computed by the algorithm of
Fig. 9 will keep adequate precision, though the experimental results
of Sect. 6 did not show any occurrence of such a precision loss.

Example 10 (Clumping). When applied to the abstract states of
Fig. 4, this algorithm clumps m1,m2,m3 into the abstract state
m1,2,3 of Fig. 5. At the same time, it keeps m0 separate.

4.5 On the Essence of the Silhouette Abstraction

We now propose to discuss, in a general setting, the way the
silhouette abstraction works. We started with an abstraction of heaps
that is used in shape analysis, and identified a cause of precision loss
when computing joins of abstract states. In general, when abstract
states that are too dissimilar and do not join well, the analysis
will lose critical properties about shapes, that cannot be recovered:
indeed, when paths of two abstract states do not match, they cannot
be joined into an abstract state that preserves paths, thus join will
discard important pointer properties. The purpose of the silhouette is
to offer a cheaper characterization of abstract states that the analysis
should not attempt to join by the means of another abstraction,
which focuses on paths (Definition 1). Theorem 3 illustrates this
property: when paths do not match, silhouette inclusion does not
hold, which entails that the inclusion of abstract states cannot hold
either. Theorem 4 extends this property to union.

Remark 1 (Silhouettes in static analysis: a numerical example). We
can extend this approach to other situations. We consider in this
paragraph programs that manipulate integer variables, and perform
basic arithmetic operations. A common goal for static analyses
consists of verifying the absence of division by zero errors. Let us
assume such an analysis relies on interval constraints over program
variables: a division by x can be proved safe if the analysis computes
for x either an interval of strictly negative numbers or an interval of
strictly positive numbers. We note that joining together an interval of
strictly negative numbers and an interval of strictly positive numbers
will return an interval that contains zero. Thus, after such a join, a
crucial information will be lost to verify that a division by x is safe.

The sign abstraction provides an obvious characterization what
interval unions will produce such an imprecise result: the sign
abstract domain is made of four abstract values ⊥,⊖,⊕,⊤ that
respectively denote the empty set, any set of strictly negative integers,
any set of strictly positive integers, and any set of integers. For
instance, if two intervals have sign ⊖, they can be joined without
losing information with respect to zero, whereas the join of an
interval with sign ⊖ with an interval with sign ⊕ will cause a
precision loss.

Therefore, a principle similar to silhouettes allows us to enhance
the analysis precision, with respect to the goal of proving variables
are not equal to zero:
• disjunctive states composed of finite disjunctions of intervals

can keep more precise information about sets of states where a
variable x may be positive or negative;

• the “silhouette” of intervals defined by their sign abstraction
characterizes when joining two intervals will cause a precision
loss, with respect to the property of interest.

5. Widening Disjunctive Abstract States

To infer loop invariants from an abstract pre-condition, the anal-
ysis needs to use a widening operator [10] widenD over dis-
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junctive abstract states. This operator should over-approximate
concrete union, and ensure that any sequence (dn)n of the form
dn+1 = widenD(dn, d

′
n) terminates. In this section, we assume

that widenM is a widening over abstract states, using similar algo-
rithms as join

M
. Such an operator can often be based on join

M
[9].

Widening based on silhouette-guided pairing. Intuitively, a
widening of d with d′ should widen disjuncts of d with disjuncts of
d′, using some sort of pairing to select which pairs of disjuncts are
to be widened together. Since silhouettes aim at capturing abstract
states that can be joined precisely, we build our widening around a
pairing function that we shall build based on the silhouette.

Definition 6 (Pairing function). Given d = m0 ∨ . . . ∨ mn and
d′ = m′

0 ∨ . . . ∨ m′
n′ , a pairing of d, d′ is a function πd,d′ from

{0, . . . , n} into the powerset of {0, . . . , n′} such that i 6= j implies
π(i) ∩ π(j) = ∅.

If a pairing family πd,d′ is defined for all d, d′ ∈ D, we can
define an operator over disjunctive abstract states that lets the pairing
function define which disjuncts of the right argument are widened
with each disjunct of the left argument, and preserves the disjuncts
of the right argument that do not appear in the pairing.

Definition 7. Let d = m0 ∨ . . . ∨ mn and d′ = m′
0 ∨

. . . ∨ m′
n′ . We let widenD(d, d

′) be defined as the abstract state
m′′

0 , . . . ,m
′′
n+k, where:

• m′′
i = widenM(mi, joinM

({m′
l | l ∈ πd,d′(i)})) if i ≤ n;

• {m′′
n+i | 1 ≤ i ≤ k} = {m′

j | ∀i, j 6∈ πd,d′(i)}.

This operator always returns a sound over-approximation of
its arguments. Yet, depending on the pairing family, it may fail to
guarantee termination. In the following, we define a pairing family
that ensures termination so that widenD indeed defines a widening.

A good pairing should map abstract states that produce a precise
widening, in the same way as clumping for join. It should also
drive the introduction of summary predicates. As observed in
Sect. 4, silhouettes hold information capable of guiding this process.
However, for termination, we need to bound silhouettes. Thus, we
define a pairing that is parameterized by an integer bound b, and that
associates abstract states with silhouettes that are equivalent when
regular expressions are smashed upon exceeding length b (in the
following, we let b = 1):

Definition 8 (Silhouette-based pairing). We let F denote the set
of all field names, and we define the regular expression bounded
abstraction by ωb(e1 · . . . · ek) = e1 · . . . · eb · F

⋆ if k > b
and ωb(e1 · . . . · ek) = e1 · . . . · ek · F

⋆ otherwise. We let
function Ωb abstract a silhouette by replacing each edge (n, e, n′)
by (n, ωb(e), n

′).
Last, if s, s′ are silhouettes, then we write s⋊b s

′ if and only if
leq

S
(Ωb(s

′),Ωb(s)) = true.

Theorem 7 (Widening). The operator widenD defined using the
pairing of Def. 8 enforces termination of abstract iterates.

The proof relies on the finiteness of the image of Ωb, which
entails that, for any sequence (dn)n of widened iterates (such that
dn+1 = widenD(dn, d

′
n)), the disjuncts in dn eventually stabilize

to a set corresponding to a fixed, finite set of silhouettes.

Example 11. Fig. 10 displays a few of the disjuncts that arise in
the second and third iteration over the first loop in the analysis
of the code presented in Fig. 2. Disjunct m0 occurs in the second
iteration whereas disjuncts m′

0,m
′
1,m

′
2 arise in the third iteration.

For clarity, we only show the nodes on the path between t, x and
y. In the table below, we show their silhouettes before and after

m0 :
t x y

l l

r r

m′
0 :

t x y
l l l

r r r

m′
1 :

t x y
l l

r
r r

l

m′
2 :

t x y
l

r
l

r

l

r

Figure 10. Widening disjunctive abstract states.

applying the bounded abstraction:

silhouette bounded abstraction

m0 {(t, l, x), (x, l, y)} {(t, l · F⋆, x), (x, l · F⋆, y)}
m′

0 {(t, l · l, x), (x, l, y)} {(t, l · F⋆, x), (x, l · F⋆, y)}
m′

1 {(t, l · l, x), (x, r, y)} {(t, l · F⋆, x), (x, r · F⋆, y)}
m′

2 {(t, l · r, x), (x, l, y)} {(t, l · F⋆, x), (x, l · F⋆, y)}

Then, Π(m0) ⋊b Π(m′
0) and Π(m0) ⋊b Π(m′

2) hold whereas
Π(m0)⋊b Π(m′

1) does not. Thus, the pairing is defined by π(0) =
{0, 2}. The widening will thus preserve the information which says
whether y is the left or right child of x.

Static analysis. We now summarize the whole analysis. As a
forward abstract interpretation [10], it starts with an abstract pre-
condition that over-approximates initial memory states with a single
disjunct (either the set of all memory states, with no structure allo-
cated for whole program analysis, or a pre-condition describing the
valid call states for the analysis of a library function) and computes
abstract post-conditions for each statement. Post-conditions of as-
signment, test, allocation and deallocation statements are computed
locally on each disjunct in parallel, as discussed in Sect. 3.1. When
the analysis computes disjunctive abstract states d, d′ before a con-
trol flow join, it applies clumping (Sect. 4) to d ∨ d′. For loops,
standard fixpoint approximation techniques [10] apply, and the sil-
houette guided widenD operator (Th. 7) enforces convergence of
disjunctive abstract states sequences. The analysis is sound and
returns abstract post-conditions that over-approximate final states.

6. Experimental Evaluation

Research hypotheses. In this section, we empirically evaluate
whether or not semantic-directed clumping is effective in improving
the static analysis of data structures from real-world C libraries. We
implemented clumping inside the MemCAD analyzer [36]. We seek
to provide evidence for or against the following hypotheses:

RH1 (Clumping is effective). Semantic-directed clumping with
guided join is necessary and effective for analyzing data struc-
ture operations from existing, real-world libraries. The underlying
premise of this paper is that inferring disjunctive loop invariants is
necessary to effectively analyze real-world data structures. While
certain code may be reasonably adapted to avoid the need for dis-
junctive invariants, analyzing existing, real-world code typically
involves handling corner cases in separate disjuncts. We assess the
impact of silhouettes on analysis and compare with other techniques.

RH2 (Guided join is necessary). Guided join is necessary to
avoid unacceptable precision loss. Semantic-directed clumping uses
silhouette abstraction to select the disjuncts to join. Guided join then
subsequently uses these same silhouettes to perform the shape join.
We seek to evaluate the need for this latter step.
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RH3 (Clumping has low overhead). The overhead of semantic-
directed clumping is reasonable. We hope and expect that the
additional overhead in computing and comparing silhouettes is
outweighed by the benefit of increased precision and improved
scalability. This aspect must be tested empirically as the number of
silhouette comparisons is quadratic in the number of disjuncts.

RH4 (Clumping limits disjunctive explosion). Semantic-direct-
ed clumping improves the scalability of disjunctive analysis by limit-
ing the number of disjuncts in the abstract state. Without clumping,
the number of disjuncts grows exponentially from control-flow paths
and unfolding of inductive predicates. The scalability of disjunctive
analysis (and thus most shape analyses) is limited by the exponential
growth in the number of disjuncts in the abstract state. Thus the
technical challenge is to avoid piling up more and more unnecessary
disjuncts while analyzing sequences of operations.

Experimental methodology. To evaluate the effectiveness of
semantic-based clumping, we consider 26 benchmarks of varying
implementation styles and degrees of difficulty to analyze. These in-
clude operations over singly-linked and doubly-linked lists, as well
as various binary trees with different kinds of invariants and pointer
patterns (search, splay, red black, or AVL and with various sharing
patterns). The operations consist of variants of finding an element,
inserting, deleting, reversing, and sorting. Notably 21 benchmarks
are from external sources. Some of these come with typically simple,
user-specified assertions (e.g., x != NULL). Each benchmark con-
sists of a top-level function implementing a data structure operation
with a pre- and a post-condition that specify the preservation of
precise shape invariants. Some routines are recursive whereas the
others contain nested loops. Table 1 lists these benchmarks with
metrics to get a sense of the difficulty to analyze, including presence
of recursion, lines of code, numbers of sub-routines, numbers of
loops and acyclic paths. The latter gives the number of disjuncts
that a naı̈ve path and context-sensitive analysis would have at the
exit point. The final metric is the maximum number of simultaneous
pointers into a data structure instance (column Simult. Pointer). The
summary row gives total counts of LOCs, assertions, functions,
loops and paths, and the average number of simultaneous pointers.
As discussed in Section 1, the number of simultaneous pointers into
an instance is related to the number of disjuncts needed to represent
the program invariant.

The analysis is parameterized by the definition of ind (or infers
it for basic list and tree cases). It attempts to prove memory safety,
any user-specified assertions, and the (more complex) post-condition
given a C program and optionally inductive predicates summarizing
memory regions. Clumping is applied at the beginning and end of
functions, at loop heads, at loop exits, and at the end of branches.

We evaluate and compare the following clumping strategies:
• ClumpG and Clump do silhouette-guided clumping (Sect. 4.4);
ClumpG uses guided join (Sect. 4.3), whereas Clump does not;

• None is the baseline technique, that does not compute silhouettes
to perform clumping or guided joining;

• Canon and CanonG conservatively model canonicalization opera-
tors [17, 35]: they compute silhouettes but only join abstractions
when their silhouettes are exactly the same (after folding nodes
which are not pointed to by live variables); CanonG uses guided
joining whereas Canon does not (we expect these strategies will
still compute fewer disjunctions than a purely syntactic canoni-
calization would).

RH1: Clumping is effective. Our analyzer attempts to infer com-
plex disjunctive shape invariants in loops, which is particularly
challenging considering the benchmarks shown in Table 1 with not
only forward and back pointers but also possibly unbounded sharing
patterns. Back pointers (as in doubly-linked lists or trees with parent
pointers) require not only forward unfolding of inductive summaries

Benchmark LOC
User

Assert Fun Loop Path
Simult.
Pointer

singly-linked list
sll-delmin 25 0 1 1 12 5

sll-delmin† 26 0 2 1† 6 5
sll-delminmax 49 0 1 1 248 7

sll-delminmax† 52 0 2 1† 124 7

binary search tree
bstree-find 26 0 1 1 4 3

bstree-find† 26 0 2 1† 4 3

Predator singly-linked list
psll-reverse 11 0 1 1 2 3
psll-isort 20 0 1 2∗ 5 5
psll-bsort 25 0 1 2∗ 10 4

GDSL doubly-linked list (back pointers) with sentinel head and tail
gdll-findmin 49 14 8 1 3 5
gdll-index 55 14 9 2 24 2
gdll-findmax 58 14 8 1 3 5
gdll-find 78 26 10 1 18 5
gdll-delete 107 26 12 1 72 5

GDSL binary search tree with leaf-to-root and back pointers
gbstree-find 53 8 7 1 20 3
gbstree-insert 133 15 12 1 7680 5
gbstree-delete 165 9 15 1 23040 10

BSD splay tree
bsplay-find 81 0 4 1 56 5
bsplay-delete 95 0 4 2 448 5
bsplay-insert 101 0 4 1 43 5

BSD red black tree with back pointers
brbtree-find 29 0 3 1 4 2
brbtree-insert 177 0 4 2 3036 7
brbtree-delete 329 0 5 3 1.e+ 8 12

JSW AVL tree
javl-find 25 0 3 1 26 2
javl-free 27 0 3 1 3 3
javl-insert 95 0 6 2 1.e+ 8 6

summary 1917 126 123 34 2.e+ 8 5.0

Table 1. List of benchmarks, divided into internal, microbench-
marks (top) and benchmarks from external sources (bottom) includ-
ing the Predator test suite [18], the GNU Data Structure Library
(GDSL), the BSD library, and a tutorial implementation of AVL
trees (JSW) [37]. Some external libraries include typically simple,
user-specified assertions (User Assert). A † indicates the routine is
recursive, while a ∗ indicates the loops are nested. The subsequent
columns provide metrics for the complexity of the code, including
the total number of functions (Fun), the number of loops (Loop),
the number of acyclic paths (Path), and the maximum number of si-
multaneous pointers into a data structure instance (Simult. Pointer).

but also backward unfolding [8]. The BSD red-black tree has parent
pointers, which is heavily used in rebalancing. The leaves of the
GDSL binary search tree all point back to the root node.

We observe a number of implementation idioms that drive a
need for disjunctions. First, the maximum number of simultaneous
pointers into a data structure instance (Simult. Pointer) is one
driving factor as mentioned above, which typically increases as the
operations get more complex (e.g., 12 for brbtree-delete). Second,
the GDSL doubly-linked list uses sentinel nodes for the list head
and tail. Because they are different than normal nodes, they cannot
be summarized into the normal list segment, which yields more
disjuncts to represent the possible points-to relationships between
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(a) Number of benchmarks verified using each strategy.

Benchmark ClumpG Clump CanonG Canon None

sll-delmin 0.04 ⊤ 0.05 ⊤ ⊤

sll-delmin† 0.04 0.05 ⊤ ⊤ ⊤

sll-delminmax 0.12 ⊤ 0.42 ⊤ ⊤

sll-delminmax† 0.20 0.20 ⊤ ⊤ ⊤

bstree-find 0.03 ⊤ 0.05 ⊤ ⊤

bstree-find† 0.04 0.04 0.11 0.11 ⊤

psll-reverse 0.02 0.02 0.02 0.02 0.02
psll-isort 0.03 0.03 0.04 0.04 ⊤

psll-bsort 0.04 0.04 0.04 0.04 0.06
gdll-findmin 0.61 0.61 0.62 ⊤ 0.61
gdll-index 0.61 ⊤ 0.62 ⊤ 0.61
gdll-findmax 0.61 0.61 0.62 ⊤ 0.60
gdll-find 0.62 0.62 0.63 0.65 ⊤

gdll-delete 0.62 0.63 0.63 0.64 ⊤

gbstree-find 0.59 ⊤ 0.59 ⊤ 0.58
gbstree-insert 0.65 ⊤ ⊤ ⊤ ⊤

gbstree-delete 1.64 ⊤ 1.71 ⊤ 1.39
bsplay-find 0.28 ⊤ 0.56 0.56 ⊤

bsplay-delete 0.48 ⊤ 1.08 1.07 ⊤

bsplay-insert 0.30 ⊤ 0.62 0.62 ⊤

brbtree-find 0.36 ⊤ 0.36 ⊤ ⊤

brbtree-insert 1.07 ⊤ ⊤ ⊤ ⊤

brbtree-delete 6.06 ⊤ ⊤ ⊤ ⊤

javl-find 0.19 ⊤ 0.19 ⊤ 0.19
javl-free 0.18 0.19 0.19 0.18 0.19
javl-insert 1.84 ⊤ 5.22 ⊤ ⊤

average (all) 0.66 0.28 0.68 0.39 0.47

verified 26 11 21 10 9

(b) Analysis times are only reported if all assertions are successfully ver-
ified, including the preservation invariant in post-conditions. ⊤ indicates
failure to verify (due to precision loss). Run times (in seconds) measured
on one core of a 3.20GHz Intel Xeon with 16GB of RAM. Times are
reported as an average of three runs.

Figure 11. Successful verification times with different analysis
strategies. The clumping with guided join strategy can verify signifi-
cantly more benchmarks than any other strategy and over 3x more
than the None baseline—and all at similar cost in analysis time.

those nodes and the internal list segment. Third, nodes sometimes
need to remain materialized between loops. Disjunctions are needed
to represent the cases where the materialized node can occur but
the number of disjuncts explodes exponentially in the number of
materialized nodes in a tree. For example, delete in a red-black
tree (brbtree-delete) requires three loops in sequence: find the node
n to delete, find the minimum node m in the right subtree of n
(i.e., the next in-order node to preserve the binary search invariant),
rebalance the tree from the right subtree of that minimum node
m. The node to delete n must be kept materialized between the
first and second loop (to be able to track the swap of m and n)
but becomes irrelevant between second and third loop (after the
swap). While maintaining a disjunct, or trace partition, for every
acyclic path may be sufficiently precise in many or even most cases,
it is clear from the path counts (column Path) that this choice is

utterly infeasible in practice. The essence of semantic-directed
clumping is to identify this sort of relevance or irrelevance of a
materialized node by computing silhouettes (i.e., “abstracting the
abstraction”). In Fig. 11(a), we compare clumping with guided
join with the other strategies showing the number of benchmarks
that can be successfully verified memory safe (i.e., free of null or
dangling pointer dereference), the user-specified asserts, and the
shape preservation post-condition using the different strategies (also
see the bottom line of Fig. 11(b)). The bottom line is that clumping
with guided join (ClumpG) is significantly more effective (able to
verify benchmarks) than the baseline and also more capable than any
other strategy. CanonG fails to verify, for example, the particularly
complex red-black tree insertion and deletion operations.

Clumping with guided join is able to verify these additional
benchmarks with comparable analysis times as any other configura-
tion. The analysis time is larger for more complex benchmarks (e.g.,
for red-black tree delete brbtree-delete), which as expected raises
its average analysis time, but ClumpG is also the only strategy that
succeeds on this code. ClumpG is also notably faster than CanonG on
javl-insert. Fig. 11(b) shows that ClumpG takes comparable or even
less time than other strategies on benchmarks where other strategies
succeed (e.g., in the bsplay benchmarks).

Another measure of effectiveness of ClumpG is that analysis logs
show this strategy led to no precision loss in joins.

RH2: Guided join is necessary. Fig. 11(a) and 11(b) also show
that not only is clumping effective but guided join is also necessary.
While Clump does improve on the baseline (11 versus 9), the guided
join strategies (ClumpG and CanonG) are significantly better (26 and
21, respectively). Clump and Canon tend to fail more in the tree
benchmarks, as there is a larger search space for the join; guiding
appears more critical when the search space for join is larger.

RH3: Clumping has low overhead. From the discussion above,
we see that ClumpG is comparable in analysis times with any
other configuration providing some evidence that clumping has
a reasonable overhead. To see this more directly, we show in the
graph below, the percentage of the analysis time spent on clumping,
join, and other for each benchmark. We find that in all cases the time
spent on clumping (which includes the time to compute silhouettes)
is a very small percentage of the total analysis time (no more than a
few percent), and much smaller than the time spent in join.

sllsll

dll

bst
gbst

spt

rbt

avl

clump

join

other

% time spent

RH4: Clumping limits disjunctive explosion. Fig. 12(a) drills
further down on the verification times from Fig. 11(b) by considering
the maximum number of disjuncts produced at a loop head, any
program point, and at the exit point of the operation. First, we
observe that interestingly, the None baseline configuration only
succeeds when the number of disjuncts at loop head is 1. When
more than one disjunct is needed for the loop invariant, the silhouette
abstraction seems crucial to guiding the inference of a sufficiently
precise invariant. Second, in all cases where both ClumpG and
CanonG succeed, ClumpG uses fewer disjuncts in the loop invariant,
and the difference can be quite significant (e.g., for javl-insert, 3
versus 18). And interestingly, ClumpG is always able to get to a
single disjunct at the exit point while proving the post-condition.
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ClumpG CanonG None

Benchmark Fix Max Post Fix Max Post Fix Max Post

psll-reverse 1 1 1 1 1 1 1 1 1
psll-isort 1 2 1 1 3 2 1 ⊤ ⊤

psll-bsort 1 5 1 1 4 1 1 8 1
gdll-findmin 2 3 1 4 7 2 1 3 2
gdll-index 1 7 1 1 5 2 1 5 5
gdll-findmax 2 3 1 4 7 2 1 3 2
gdll-find 2 6 1 2 6 2 ⊤ ⊤ ⊤

gdll-delete 2 6 1 2 6 2 ⊤ ⊤ ⊤

gbstree-find 1 3 1 1 3 3 1 3 3
gbstree-insert 2 4 1 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

gbstree-delete 1 69 1 2 68 1 1 54 54
bsplay-find 3 42 1 5 89 1 ⊤ ⊤ ⊤

bsplay-delete 3 42 1 5 89 1 ⊤ ⊤ ⊤

bsplay-insert 3 42 1 5 89 1 ⊤ ⊤ ⊤

brbtree-find 1 13 1 2 8 2 ⊤ ⊤ ⊤

brbtree-insert 3 51 1 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

brbtree-delete 3 108 1 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

javl-find 1 3 1 1 3 1 1 3 3
javl-free 1 2 1 1 2 1 1 ⊤ ⊤

javl-insert 3 120 1 18 240 1 ⊤ ⊤ ⊤

max 3 120 1 18 240 3 1 54 54

(a) The maximum number of disjuncts at a loop head (Fix), at any
program point (Max), and at the exit point (Post) produced by the ClumpG,
CanonG, and None analysis configurations.

ClumpG CanonG None

Benchmark Time Post Time Post Time Post

gbstree-find 3.3 1 2.18 1 40.79 158
brbtree-insert 60.2 1 ⊤ ⊤ ⊤ ⊤

javl-find 0.63 1 ⊤ ⊤ 3.77 158
javl-insert 129.9 1 526.17 1 ⊤ ⊤

average (all) 48.5075 1 264.175 1 22.28 158

(b) Synthesize a new benchmark by sequentially composing a data
structure operation 32 times to simulate multiple operations in sequence
(times in seconds).

Figure 12. Clumping limits disjunctive explosion.

From these observations, we hypothesize that being able to
clump into the minimal number of necessary disjuncts is crucial to
analyzing data structure operations in a client program that makes
several such calls. To test this hypothesis, we perform a controlled
experiment by sequentially composing a given operation with itself
32 times and trying to prove the shape preservation invariant at
the end. The resulting analysis is notably more complex than for
the initial code, due to growingly complex abstract states over call
sequences. Results in Fig. 12(b) show that ClumpG keeps the number
of disjuncts constant and scales well, whereas CanonG and None
suffer a significant slowdown on the cases where they do not fail.

7. Related Works

Several generic techniques are used to handle disjunctions in static
analyses. Disjunctive completion [11] adds support for disjunctions
to an abstract domain, but never collapses them, thus is too expensive
in practice. Similarly, [19] introduces the least disjunctive basis of
an abstract domain as a compact domain with the same disjunctive
completion, though this construction does not minimize the size of
the representation of the abstract elements. State partitioning [12,
23] attaches abstract states to specific sets of states, which effectively
allows one to support disjunctive properties while providing a way

to control disjunct numbers via the definition of partitions. Trace
partitioning [22, 33] achieves a similar result using information
about traces. However, these works provide frameworks, and do
not address the problem of finding a criterion to clump disjuncts.
Silhouettes provide such a criterion, based on the properties of join.

Shape analyses based on three-valued logic [35], and on separa-
tion logic [4, 5, 7, 9, 18] are known to require disjunctions. The same
goes for array analyses [21]. Several strategies have been designed
to limit the number of disjunctions. When summary predicates de-
note non-empty regions, possibly empty regions create an additional
need for disjunctions. Thus, several proposals have been made to
let summary predicates denote possibly empty regions [9, 13, 38].
Canonicalization operators [4, 17, 25, 35] collapse abstract states
into a smaller, finite lattice, and hereby bound the number of dis-
juncts. While the analysis may use a larger lattice, precision after
application of this operation is limited by that of the smaller lattice.
Join operators [9, 38] do not require a smaller lattice (hence can keep
more information), but lack a mechanism to bound the cardinality of
disjunctions. To apply join or canonicalization operators efficiently,
several strategies have been designed. Arnold [2] groups abstract
states that satisfy some inclusion relation. Moreover, [38] performs
a partial join that groups disjuncts only when it syntactically verifies
the absence of precision loss. By contrast, our work proposes a
criterion based on an abstraction of abstract states, and on the fact
that this abstraction is cheaper to compute. A more related work is
that of Manevich [27], that extends TVLA [25] with a grouping of
three-valued abstract states based on a partial graph isomorphism.

Techniques to merge disjuncts have been developed in static
analyses for numerical properties as well. For instance, a notion of
affinity between polyhedra is used in [31] so as to decide whether
they can be joined without too significant a precision loss. This
approach is extended in [30] to deal with set properties. Bagnara [3]
proposed a widening over disjunctions of polyhedra, that tests for
implication to better bound the precision loss.

Existing off-line approaches for the parameterization of static
analyses and abstract domains (such as the selection of the ab-
stract domain to use, and of the abstract values to keep) include
syntactic heuristics based on code patterns [6], machine learning
techniques [26, 29], and semantic impact pre-analysis methods [28].
The disjunct clumping problem is tied to the abstract states that arise
during the analysis, thus unsurprisingly calls for using an on-line
abstraction of these at analysis time.

Finally, we remark that other analyses that abstract structures
with summaries [14], heap abstractions [15], rich type systems [24,
34] or quantified logical assertions [20] may benefit from adapted
forms of silhouette abstraction when facing the disjunction problem.

8. Conclusion

In this paper, we introduced silhouettes that abstract abstract states.
The information enclosed in the silhouettes proves useful not only
to clump disjunctions of abstract states, but also to compute better
abstract joins. These results were achieved by selecting a definition
of silhouettes that provides a weak entailment check over abstract
states, and hereby characterizes accurately abstract states that are
likely to join well. This characterization is conservative with respect
to the standard analysis algorithms: while it will always suggest
clumping abstract states that can be joined precisely, it may suggest
clumping abstract states that cannot be joined precisely, though we
never observed this behavior in the experiments. This situation is
quite similar to that of a static analysis that can be proven sound
but is conservative in theory, yet computes very precise results in
practice. Our experimental evaluation confirms the effectiveness
of the silhouette abstraction, which allows our implementation to
verify a large collection of challenging benchmarks at a reasonable
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cost. The overhead inherent in computing silhouettes is outweighed
by the benefit of increased precision and improved scalability.
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