
Evaluating the Accuracy of Java Profilers

Todd Mytkowicz Amer Diwan

University of Colorado at Boulder

{mytkowit,diwan}@colorado.edu

Matthias Hauswirth

University of Lugano

Matthias.Hauswirth@unisi.ch

Peter F. Sweeney

IBM Research

pfs@us.ibm.com

Abstract

Performance analysts profile their programs to find methods that
are worth optimizing: the “hot” methods. This paper shows that
four commonly-used Java profilers (xprof , hprof , jprofile, and
yourkit) often disagree on the identity of the hot methods. If two
profilers disagree, at least one must be incorrect. Thus, there is
a good chance that a profiler will mislead a performance analyst
into wasting time optimizing a cold method with little or no perfor-
mance improvement.

This paper uses causality analysis to evaluate profilers and to
gain insight into the source of their incorrectness. It shows that
these profilers all violate a fundamental requirement for sampling-
based profilers: to be correct, a sampling-based profiler must collect
samples randomly.

We show that a proof-of-concept profiler, which collects sam-
ples randomly, does not suffer from the above problems. Specif-
ically, we show, using a number of case studies, that our profiler
correctly identifies methods that are important to optimize; in some
cases other profilers report that these methods are cold and thus not
worth optimizing.

Categories and Subject Descriptors C.4 [Measurement tech-
niques]

General Terms Experimentation, Performance

Keywords Bias, Profiling, Observer effect

1. Introduction

Performance analysts use profilers to identify methods that con-
tribute the most to overall program execution time (hot methods)
and are therefore worth optimizing. If a profile is incorrect, it may
mislead the performance analyst into optimizing cold methods
instead of hot methods. This paper shows that four commonly-
used Java profilers (xprof [24], hprof [23], jprofile [11], and
yourkit [26]) often produce incorrect profiles. Specifically, it shows
that these profilers often disagree on both the identity of the hot
methods and the time spent in methods; if two profilers disagree,
they cannot both be correct.

A profiler may produce incorrect profiles due to two reasons.
First, a profiler may be biased toward some methods in favor of
other methods. For example, a profiler that ignores native methods
(i.e., biased away from native methods) may indicate that the hot

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’10 June 5–10, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0019/10/06. . . $10.00

methods are in bytecode when in reality they are all in native code.
Second, a profiler may perturb the program being optimized and
thus change its profile (observer effect). This paper shows that both
of these effects contribute to incorrect profiles.

Determining if a profile is correct is impossible in general be-
cause there is no “perfect” profile: all profiles exhibit some bias and
observer effect.1 Thus, we introduce the notion of actionable to ap-
proximate the correctness of a profile. A profile is “actionable” if
acting on the profile yields the expected outcome. For example, if
a profile of an application identifies method M as hot, then we ex-
pect that optimizing M will significantly speed up the application.
Actionable does not imply correctness: e.g., a profile may attribute
15% of overall execution time to M but a hypothetical “correct
profile” may attribute 20%. Both of these profiles are actionable
(i.e., both will guide the performance analyst towards M since both
15% and 20% are significant) but only one is correct.

To evaluate if a profiler is actionable, we use causality analy-
sis[21]. Causality analysis works by intervention: we change our
system (the intervention) and then check if the intervention yields
the predicted performance. If the prediction holds, then causal-
ity analysis gives us confidence that the profiler is actionable; if
the prediction does not hold, causality analysis indicates that the
profiler is not actionable. To ensure our results are not an arti-
fact of a particular JVM, we show that profilers often produce
non-actionable profiles on two different production JVMs (Sun’s
Hotspot and IBM’s J9).

The contributions of this paper are as follows:

1. We show that commonly-used profilers often disagree with each
other and thus are often incorrect.

2. We use causality analysis to determine whether or not a profiler
is producing an actionable profile. This approach enables us
to evaluate a profiler without knowing the “correct” profile;
prior work on evaluating the accuracy of profilers assumes the
existence of a “correct” profile (Section 8.1). For example,
Buytaert et al. use a profile obtained using HPMs and frequent
sampling to evaluate the accuracy of other profilers [5].

3. We show, using causality analysis, that commonly-used profil-
ers often do not produce actionable profiles.

4. We show that the observer effect biases our profiles. In partic-
ular, dynamic optimizations interact with a profiler’s sampling
mechanism to produce profiler disagreement.

5. We introduce a proof-of-concept profiler that addresses the
above mentioned source of profiler bias. As a consequence our
profiler produces actionable profiles.

1 We do not consider profilers that use external hardware probes or simula-
tion, both of which can avoid some forms of incorrectness. Those methods
introduce their own challenges (e.g., simulator accuracy) and are outside
the scope of this paper.

hprof jprofile xprof yourkit

0

5

10

15

20

JavaParser.jj_scan_token

NodeIterator.getPositionFromParent

DefaultNameStep.evaluate

l

l l

l

l

l

l ll l

l

l

p
e

rc
e

n
t

o
f

o
ve

ra
ll

e
xe

c
u

ti
o

n

Figure 1. Disagreement in the hottest method for benchmark pmd
across four popular Java profilers.

This paper is organized as follows: Section 2 presents a mo-
tivating example. Section 3 presents our experimental methodol-
ogy. Section 4 illustrates how profiler disagreement can be used
to demonstrate that profiles are incorrect. Section 5 uses causal-
ity analysis to determine if a profiler is actionable. Section 6 ex-
plores why profilers often produce non-actionable data. Section 7
introduces a proof-of-concept profiler that addresses the bias prob-
lems with existing profilers and produces actionable profiles. Fi-
nally, Section 8 discusses related work and Section 9 concludes.

2. Motivation

Figure 1 illustrates the amount of time that four popular Java
profilers (hprof , jprofile, xprof , and yourkit) attribute to three
methods from the pmd DaCapo benchmark [3]. There are three
bars for each profiler, and each bar gives data for one of the three
methods: jj scan token, getPositionFromParent, and evaluate.
These are the methods that one of the four profilers identified as the
hottest method. For a given profiler, P , and method, M, the height
of the bar is the percentage of overall execution time spent in M
according to P . The error bars (which are tight enough to be nearly
invisible) denote 95% confidence interval of the mean of 30 runs.

Figure 1 illustrates that the four profilers disagree dramatically
about which method is the hottest method. For example, two of the
profilers, hprof and yourkit , identify the jj scan token method as
the hottest method; however, the other two profilers indicate that
this method is irrelevant to performance as they attribute 0% of
execution time to it.

Figure 1 also illustrates that even when two profilers agree
on the hottest method, they disagree in the percentage of time
spent in the method. For example, hprof attributes 6.2% of overall
execution time to the jj scan token method and yourkit attributes
8.5% of overall execution time to this method.

Clearly, when two profilers disagree, they cannot both be cor-
rect. Thus, if a performance analyst uses a profiler, she may or may
not get a correct profile; in the case of an incorrect profile, the per-
formance analyst may waste her time optimizing a cold method
that will not improve performance. This paper demonstrates that
the above inaccuracies are not corner cases but occur for the major-
ity of commonly studied benchmarks.

3. Experimental methodology

This section describes profilers we use in this study, the benchmark
programs we use in our experiments, the metrics we use to evaluate
profilers, and our experimental setup.

B.mark Description Time Overhead
[sec.] hprof xprof jprof. y.kit

antlr parser generator 21.02 1.1x 1.2x 1.2x 1.2x

bloat bytecode optimizer 74.26 1.1x 1.3x 1.0x 1.2x

chart plot and render PDF 75.70 1.1x 1.1x 1.1x 1.1x

fop print formatter 27.68 1.5x 1.1x 1.0x 1.8x

jython python interpreter 68.12 1.1x 1.3x 1.1x 1.7x

luindex text indexing tool 85.98 1.1x 1.2x 1.0x 1.1x

pmd source analyzer 62.75 1.9x 1.3x 1.0x 2.2x

mean 1.3x 1.2x 1.1x 1.5x

Table 1. Overhead for the four profilers. We calculate “Overhead”
as the total execution time with the profiler divided by execution
time without the profiler

3.1 Profilers

We study four state-of-the-art Java profilers that they are widely
used in both academia and industry:

hprof : is an open-source profiler that ships with Sun’s Hotspot
and IBM’s J9.

xprof : is the internal profiler in Sun’s Hotspot JVM.

jprofile: is an award-winning2 commercial product from EJ tech-
nologies.

yourkit : is an award-winning3 commercial product from YourKit.

To collect data with minimal overhead, all four profilers use
sampling. Sampling approximates the time spent in an application’s
methods by periodically stopping a program and recording the cur-
rently executing method (a “sample”). These profilers all assume
that the number of samples for a method is proportional to the time
spent in the method. We used a sampling rate of 10ms for the ex-
periments in this paper (this is the default rate for most profilers).

3.2 Benchmarks

We evaluated the profilers using the single-threaded DaCapo Java
benchmarks[3] (Table 1) with their default inputs.

We did not use the multi-threaded benchmarks (eclipse, luse-
arch, xalan, and hsqldb), because each profiler handles threads
differently, which complicate comparisons across profilers.

The “Overhead” columns in Table 1 give the overhead of each
profiler. Specifically, they give the end-to-end execution time with
profiling divided by the end-to-end execution time without profil-
ing. We see that profiler overhead is relatively low, usually 1.2 or
better for all profilers except yourkit , which has more overhead
than other profilers because it also injects bytecodes into classes to
count the number of calls to each method, in addition to sampling

3.3 How to evaluate profilers

If we knew the “correct” profile for a program run, we could eval-
uate the profiler with respect to this correct profile. Unfortunately,
there is no “correct” profile most of the time and thus we cannot
definitively determine if a profiler is producing correct results.

For this reason, we relax the notion of “correctness” into “ac-
tionable”. By saying that a “profile is actionable” we mean that
we do not know if the profile is “correct”; however, acting on the
profile yields the expected outcome. For example, optimizing the
hot methods identified by the profile will yield a measurable bene-
fit. Thus, unlike “correctness” which is an absolute characterization
(a profile is either correct or incorrect), actionable is necessarily a
fuzzy characterization.

2 Java Developer’s Journal Readers Choice Award for Best Java Profiling
(2005-2007).
3 Java Developer’s Journal Editors Choice Award.(2005).

Section 7.3 uses the notion of actionable to evaluate profilers.
However, this approach is not easy: even if we know which methods
are hot, we may not be able to optimize them. Thus, we use a dual
of this approach to evaluate profilers: rather than speeding up hot
methods, we slow down hot methods (Section 5). If a method is
hot, then slowing it down further should only make it hotter in the
profile. If it does not, then the profile (before or after slowing it
down) was not actionable.

3.4 Platform

We use an Intel Core 2 Quad processor (2.4GHz running Ubuntu
Linux version 2.6.28-13) workstation with 4GB of RAM for our
experiments. To increase the generality of our results, we use two
production JVMs: Sun Hotspot version 1.6.0 12 and IBM J9 ver-
sion 60. Unless we explicitly say so, all the data that is presented is
for the Sun JVM. In both JVMs, we always use the default configu-
ration that ships with the JVM (e.g. heap size, client JIT compiler).

3.5 Measurements

We used best experimental practices:

• To reduce the impact of other processes on our results, we run
all experiments on an unloaded machine (i.e., we killed all non-
essential processes) and use only local disks.

• To ensure that the profilers have enough samples [13] and to
avoid start-up effects, we iterate each benchmark 20 times in
the same JVM invocation using the DaCapo test harness. With
this methodology, execution times range from 21 to 86 seconds
which translates into 2, 100 to 8, 600 samples per run.

• With each invocation of the JVM, the JIT compiler places com-
piled methods at different locations. Prior work has shown code
placement impacts performance [14, 19] and so, unless other-
wise indicated, we repeat each experiment 30 times with each
experiment restarting the JVM. We picked 30 runs because the
mean is usually normally distributed after 30 “trials”, which en-
ables subsequent statistical analysis (e.g., confidence intervals)
of the data [16]. Where appropriate, we also include the 95%
confidence intervals of this mean.

4. Extent of the problem

Section 2 demonstrated that at least for one program, four profil-
ers identify three different “hottest” methods. Worse, the hottest
method due to one profiler is often cold according to another pro-
filer. Thus, at least some of the profilers are incorrect. This section
explores the following questions: (i) how frequently do profilers
disagree, (ii) what is the magnitude of their disagreement, (iii) is
their disagreement easily explained and thus innocuous (e.g., one
profiler labels the calling method as hot while another labels the
callee method as hot), and (vi) is profiler disagreement specific to a
particular JVM.

4.1 Metrics for quantifying profiler agreement

We use two metrics to quantify profiler agreement:

• Unionn is the cardinality of the set obtained by unioning the
hottest n methods from each profiler. More formally, if the set
of n hottest methods according to four profilers are H1, H2,
H3, and H4 respectively, then Unionn is |H1∪H2∪H3∪H4|.
In the best case, Unionn is n indicating that the profilers agreed
with each other in the identity (but not necessarily order) of the
hottest n methods. In the worst case, Unionn is n∗m, where m
is the number of profilers and n∗m indicates total disagreement
between the m profilers.

antlr bloat chart fop jython luindex pmd

0

1

2

3

4

U
N

IO
N

 1

benchmark

Figure 2. Union1 across the four profilers.

• HOTNESSp
m is the percentage of overall execution time spent

executing a method, m according to profiler p. HOTNESSp
m

tells the performance analyst how much of a benefit they can
expect when they optimize m. For example, if the HOTNESSp

m

is 5%, the maximum speedup we expect from optimizing m is
about 5%.4

We picked the above two metrics because they capture two of
the most common ways in which performance analysts interpret
profile information. Specifically, performance analysts often focus
on the few hottest methods especially if these methods each account
for more than a certain percentage of program execution time.

To ensure statistically significant results, we always run our
experiments multiple times. Consequently, when we report the
above two metrics, we report the average behavior across multiple
runs. For Unionn we order the methods for each profiler based on
the average from multiple runs and then compute the union.

4.2 How frequently do profilers disagree?

If disagreement between profilers happens only for a few corner
cases, we may be justified in ignoring it. On the other hand, if
profilers disagree frequently, then we cannot ignore it. This section
shows that profiler disagreement is common.

4.2.1 Profilers disagree on the hottest method

In this section, we demonstrate that profilers often disagree as to
which method is the hottest. We picked the hottest method because
it is the one that performance analysts often investigate for potential
bottlenecks.

Figure 2 gives the Union1 metric for four profilers (i.e., we
consider only the single hottest method). Each bar gives the Union1

metric for one benchmark. Recall that Union1 will be 1 if all
profilers agree on the hottest method and 4 if the four profilers
totally disagree on the hottest method.

From the figure we see profiler disagreement for four of the
seven benchmarks (i.e., the bars are higher than 1). In other words,
if we use a profiler to pick the hottest method we may end up with
a method that is not really the hottest.

These results are surprising: the most common usage scenario
for profilers is to use them to identify the hottest method; our results
show that profilers often fail even in this basic task.

4 This back-of-the-envelope calculation ignores indirect costs of the
method; e.g., memory system costs. Nonetheless, because performance an-
alysts often do such calculations, we use this metric in our paper.

l

l

l

l

l

l

l

l

l

l

2 4 6 8 10

5

10

15

20

top n methods

U
N

IO
N

 n

y = 1 * n

y
=

4
* n

Figure 3. Unionn for our four profilers with n from 1 to 10.

4.2.2 Profilers disagree on the hottest n methods

One explanation for the profiler disagreements in Figure 2 is that
there are other methods that are as hot or nearly as hot as the hottest
method. In this case, two profilers may disagree with each other but
both could be (almost) correct. For example, if the program spends
20% of its time in the hottest method and 19.9% in the second-
hottest method, then some profilers may identify the first method
as the hottest while some may identify the second method; both
are close enough to being “hottest” that the disagreement does not
really matter.

To determine whether or not this is the case, Figure 3 presents
Unionn for n ranging from 1 to 10. A point (x, y) says that Unionx

is y. Each point is the mean across the 7 benchmarks and error bars
denote 95% confidence interval of the mean.

The line y = 1 ∗ n gives the best possible scenario for profiler
agreement: with full agreement, the number of unique methods
across the top-n hottest methods of the four profilers (i.e., Unionn)
will be n. The line 4 ∗ n gives the worst case scenario for profiler
agreement: there is no agreement among the 4 profilers as to what
are the top-n hottest methods.

From Figure 3 we see that as we consider more methods (i.e.,
increase the n value), Unionn increases. In other words, even if we
look beyond the hottest method and disregard the ordering between
the hottest few methods, we still get profiler disagreement.

4.3 By how much do profilers disagree?

The Unionn metric for quantifying disagreement ignores the per-
centage of time the program spends in the hot methods. This per-
centage determines whether or not the performance analyst will
even bother to optimize the method; e.g., if the hottest method ac-
counts for only one percent of execution time, it may not be worth
optimizing even though it is the hottest method.

Figure 4 presents the percentage of overall execution time for
four hot methods in each benchmark. We picked four methods
because a client of a profile usually only cares about the first few
hot methods in the profile. For each benchmark, we picked the
four methods as follows: (i) for each method we attributed to it
the maximum percentage of execution time according to the four
profilers (e.g., if the four profilers assign 5%, 10%, 7%, and 3% to
the method, we assigned 10% to the method); (ii) we picked the
four methods with the highest assigned value. For each benchmark,
Figure 4 has four bars, one for each profiler. For each profiler, p, a
bar represents the sum of HOTNESSp

m for the four hottest methods.
If profilers agree perfectly in the percentage of time spent in the

hot methods, then we expect all bars for a method to be the same
height. Instead, we see that the bars for a method can differ widely.
For example, for the first method of luindex, the yourkit bar is at

a
n

tl
r

b
lo

a
t

c
h

a
rt

fo
p

jy
th

o
n

lu
in

d
e
x

p
m

d

agree

caller/callee

disagree

0

1

2

3

4

5

6

a
g

re
e

m
e

n
t

a
c
ro

s
s
 6

 p
a

ir
s

Figure 5. When a pair of profilers disagree, how is that disagree-
ment distributed?

55% while the hprof and jprofile bars are at about 15%. In many
cases (e.g., for the first method of jython) we see that one profiler
finds that the method consumes tens of percent of execution time
while another profiler finds that the method consumes little or no
execution time.

We also see no consistent agreement between profilers: e.g.,
hprof sometimes agrees and sometimes disagrees with jprofile. In
other words, we cannot just throw out one profiler and expect that
the remaining profilers will all agree with each other.

To summarize, profilers disagree and attribute vastly different
amounts of time to the same method. Because performance analysts
use the time spent in a method to decide whether or not they
should optimize the method, this disagreement can easily mislead a
performance analyst and result in the performance analyst wasting
time optimizing a method that will have little or no impact on
performance.

4.4 Is profiler disagreement innocuous?

In Section 4.2.2 we demonstrated that profilers often disagree as to
which method is the hottest. In this section, we discuss how two
profilers disagree. In particular, if two profilers identify different
methods as the “hottest” but the two methods are in a caller-callee
relationship then the disagreement may not be problematic: it is
often difficult to understand a method’s performance without also
considering its callers and callees and thus a performance analyst
will probably end up looking at both methods with both profilers.

Figure 5 categorizes profiler disagreement to determine if the
caller-callee relationship accounts for most of the disagreement
between profilers. A given pair of profilers may (a) agree on the
hottest method (“agree”); (b) disagree on the hottest method but
the hottest method due to one profiler is a transitive caller or callee
of the hottest method due to the other profiler (“caller/callee”); or
(c) disagree on the hottest method and the hottest method returned
by one profiler does not call (directly or transitively) the hottest
method returned by the other profiler (“disagree”). Each bar cat-
egorizes the agreement for all profiler pairs for one benchmark;
because there are six (

`

4

2

´

) possible pairings of four profilers, each
bar goes to 6.

From Figure 2, we know that all four profilers agree on the
hottest method for benchmarks bloat, chart, and fop, and thus
all profiler pairs for these benchmarks fall in the “agree” cate-
gory. However, for the four benchmarks where the profilers dis-
agree, only one benchmark, luindex has a caller/callee relationship
between the hottest methods identified by the different profilers.
Three out of the four times when a pair of profilers disagree their
hottest methods are not in a (transitive) caller/callee relationship.

a
n

tl
r

a
n

tl
r

a
n

tl
r

a
n

tl
r

b
lo

a
t

b
lo

a
t

b
lo

a
t

b
lo

a
t

c
h

a
rt

c
h

a
rt

c
h

a
rt

c
h

a
rt

fo
p

fo
p

fo
p

fo
p

jy
th

o
n

jy
th

o
n

jy
th

o
n

jy
th

o
n

lu
in

d
e
x

lu
in

d
e
x

lu
in

d
e
x

lu
in

d
e
x

p
m

d

p
m

d

p
m

d

p
m

d

0

10

20

30

40

50

60

70
hprof

jprofile

xprof

yourkit

%
 o

f
to

ta
l
ti
m

e
 i
n

 m
e

th
o

d

Figure 4. HOTNESSp
m for p being one of the four profilers and m being one of the hottest four methods.

In summary, profiler disagreement is not innocuous: when two
profilers disagree one, or both of them may be totally incorrect.

4.5 Is the JVM the cause of profiler disagreement?

In Figure 2, we quantified profiler agreement on Sun’s Hotspot
production JVM. We also repeated the same set of experiments
using IBM’s J9 production JVM. Because J9 does not ship with
xprof , we used three profilers for J9 instead of four.

For J9 we also found the same kinds of profiler disagreement
as with Hotspot. For example, across the seven benchmarks, there
were only two benchmarks (fop and luindex) where the three
profilers agreed on the hottest method. Thus, profiler disagreement
is not an artifact of a particular JVM—we have encountered it on
two production JVMs.

4.6 Summary

We have shown that profiler disagreement is (i) significant—four
state of the art Java profilers often disagree with each other and (ii)
pervasive—occurring for many of our seven benchmarks and in two
production Java virtual machines. Because profiler disagreement
implies incorrect profiles, this problem is serious: a performance
analyst may waste time and effort optimizing a cold method that
has little or no impact on overall program performance.

5. Causality analysis

In the previous section, we used profiler disagreement to identify
that at least one of the profilers generates incorrect profiles. How-
ever, profiler disagreement does not tell us if any of the profilers
produce actionable profiles. We use causality analysis [21] to de-
termine if a profile is actionable.

Causality analysis, in our context, proceeds in three steps:

Intervene: We transform a method, M, to change the time spent
in M. The transformation may take the form of code changes
or changes to some parameters that affect the performance of
M. For example, we may change the algorithm in a method or
ask it to use a different seed for a random number generator.

Profile: We measure the change in execution time for M and for
the entire program. We use a profiler to determine the time spent
in M before and after the intervention. We use a lightweight
approach (e.g., the time UNIX command) to determine the time
spent in the original and intervened program.

Validate: If the profiles are actionable, then the change in the
execution time for M should equal the change in the execution
time of the program.

There are two significant difficulties with this approach. First,
the most obvious intervention is to optimize a hot method. How-
ever, it is not always easy to speed up a method; it may be that the
method already uses the most clever approach that we can imag-
ine. This section exploits a key insight to get around this problem:
slowing down a method is often easier than speeding up a method.
If the profiles are actionable, they should attribute the slow down in
the program to the slow down in the method.

Second, the goal of our intervention is to affect the performance
of a particular method; however due to memory system effects, our
intervention may also affect the performance of other methods [19].
We take two precautions to avoid these unintended effects: (i) In
this section, we limit interventions to changes in parameters; thus
the memory layout for the method’s code before and after the
intervention is the same. This ensures that our intervention is not
impacting performance due to a change in the program’s memory
layout, a change we did not intend. (ii) We use interventions that are
simple (e.g., affect only computation and not memory operations).
This ensures that our intervention does not interact with other parts
of the program in a way we did not intend.

5.1 The intervene and profile steps

In this section, we use automatic interventions designed to slow
down a program; in Section 7.3 we explore manual interventions
designed to speed up a program.

We use a Java agent that uses BCEL (a bytecode re-writing
library) to inject the intervention code into the program. For the
data in this section, we insert a while loop that calculates the
sum of the first f Fibonacci numbers, where f is a parameter we
specify in a configuration file. We use a Fibonacci computation
for two reasons. First, Fibonacci has a small memory footprint and
does not do any heap allocation. This simplifies the validation step
because we do not need to concern ourselves with memory system
effects. Second, we can easily change the amount of slow down
we induce (i.e., the intervention) by altering the value of f . Thus,
we can change the execution time of a program and see how that
affects the program’s profile; specifically, we can check whether the
profiler reports the change in program execution time to the method
containing the Fibonacci code. Section 7 explores the effects of
injecting a memory-bound computation in the code.

For each benchmark, we randomly picked two hot methods
from the top-10 hottest methods and inject the Fibonacci code.
The second column in Table 2 identifies the two hot methods we
used. For each experiment, we use the methodology from Section 3
with the exception that we conducted five runs per experiment
instead of 30 (which we use everywhere else in the paper) to keep
experimentation time manageable.

l

l

l

l

l

l

50 100 150 200 250 300

50

100

150

200

250

300

overall runtime (sec)

ti
m

e
 i
n

 m
e

th
o

d
 (

s
e

c
)

slope = 1.0

l

hprof:0.94

xprof:0.93

jprofile:0.65

(a) ByteBuffer.append in chart

l l l l l l

0 20 40 60 80 100 120

0

20

40

60

80

100

120

overall runtime (sec)

ti
m

e
 i
n

 m
e

th
o

d
 (

s
e

c
)

slope = 1.0

l

hprof:0.0019

xprof:5e−05

jprofile:0.001

(b) PyFrame.setlocal in jython

Figure 6. Does application slow down match slow down of the
method containing the Fibonacci loop.

We could also have repeated this experiment using sleep to pre-
cisely control how much slow down we introduce into the program.
However, sleep does not work in our context: when a program is
sleeping, profilers do not attribute the sleeping time to the program
because it is not actually running.

5.2 The validate step

By injecting Fibonacci code into a method M we slow down a
program by a fixed amount. An actionable profiler should attribute
most, if not all, of that slow down to method M. In this section, we
demonstrate that profilers rarely produce actionable profiles.

Figure 6 gives the results of our experiments for two methods:
the top graph gives data for the ByteBuffer.append method from
the chart benchmark and the bottom graph gives data for the
PyFrame.setlocal method from the jython benchmark. There is
one set of points for each profiler; the line through the points is a
linear fit of the points. We were unable to conduct this experiment
for the yourkit profiler because it does its own bytecode re-writing
which conflicts with our method for injecting the Fibonacci code.

The leftmost point is for f = 100; each subsequent point adds
200 to f . A point (x, y) on a line for profiler, P , says that when the
overall execution time of the program is x seconds, P attributed y
seconds of execution time to the method with the Fibonacci code.

In the perfect case, we expect each profiler’s line to be a straight
line with a slope of 1.0: i.e., we expect the increase in execution
time for the program to exactly match the increase in the execution
time for the method containing the Fibonacci code. The farther a
profiler’s slope is from 1.0 the less actionable is the profile. To

Benchmark Method slope

hprof xprof jprofile

antlr CharBuffer.fill 0.45 0.24 -0.05
CharQueue.elementAt 0.04 0.00 0.11

bloat PrintWriter.print 0.00 0.13 0.00
PrintWriter.write 0.42 0.23 0.39

chart ByteBuffer.append 0.94 0.93 0.65
ByteBuffer.append i 0.00 0.00 0.00

fop PropertyList.findMaker 0.00 0.00 0.00
PropertyList.findProperty 0.00 0.00 0.01

jython PyType.fromClass 0.22 0.52 0.55
PyFrame.setlocal 0.00 0.00 0.00

luindex jjCheckNAddTwoStates 0.97 1.20 0.99
StandardTokenizer.next 0.00 0.00 0.00

pmd NodeIterator.getFirstChild 0.66 0.90 0.82
JavaParser.jj scan token 0.00 0.00 0.00

mean across methods 0.26 0.28 0.23

Table 2. Slope from the linear regression for Fibonacci injection

make it easy to see this, we have included an “actionable” line
which has a slope of 1.0. In addition, the numbers in the legend
give the slope of each line obtained using a linear regression on the
data.

For the ByteBuffer.append method from the chart benchmark
in the top graph, the hprof and xprof profiler lines have slopes of
0.94 and 0.93, respectively, thus, for this method, hprof and xprof
perform reasonably well. However, jprofile has a slope of 0.65 and
thus, it does not perform as well.

For the PyFrame.setlocal method from the jython benchmark
in the bottom graph, all three profiler lines have a slope close
to 0, indicating that the profilers do not detect any change in
the execution time of the method containing the Fibonacci as we
change n. Therefore, none of the three profilers produce actionable
data for this method.

Table 2 gives the slopes for all benchmarks and profiler pairs.
The last row gives the average for each profiler. From this table we
see that the slopes are rarely 1.0; in other words, except for rare
cases, none of the three profilers produce actionable data.

6. Understanding the cause of profiler

disagreement

Section 4 demonstrates that four state-of-the-art Java profilers of-
ten disagree with each other and Section 5 demonstrates that the
four state-of-the-art Java profilers rarely produce actionable data.
This section explores the reason why profilers are producing non-
actionable profiles and why profilers disagree.

6.1 The assumption behind sampling

The four state-of-the-art Java profilers explored in this paper all
use sampling to collect profiles. Profilers commonly use sampling
to collect data because of its low overhead. However, for sampling
to produce results that are comparable to a full (unsampled) profile,
the following two conditions must hold.

First, we must have a large number of samples to get statistically
significant results. For example, if a profiler collects only a single
sample in the entire program run, the profiler will assign 100% of
the program execution time to the code in which it took its sample
and 0% to everything else. To ensure that we were not suffering
from an inadequate number of samples, we made sure that all of
our benchmarks were long running; the shortest benchmark ran
for 21.02 seconds (Table 1), which at a sampling interval of 10ms
(which we used), we get about 2, 100 samples.

Second, the profiler should sample all points in a program run
with equal probability. If a profiler does not do so, it will end up

0 500 1000 1500 2000

−
0

.0
4

−
0

.0
2

0
.0

0
0

.0
2

0
.0

4

a
u

to
c
o

rr
e

la
ti
o

n

lag of series

Figure 7. Autocorrelation for jython using random sampling.

with bias in its profile. For example, let’s suppose our profiler can
only sample methods that contain calls. This profiler will attribute
no execution time to methods that do not contain calls even though
they may account for much of the program’s execution time.

6.2 Do our profilers pick samples randomly?

Because we were careful to satisfy the first condition (by using long
runs) we suspected that the profilers were producing non-actionable
profiles because they did not satisfy the second condition.

One statically sound method for collecting random samples is
to collect a sample at every t + r milliseconds, where t is the de-
sired sampling interval and r is a random number between −t and
t. One might think that sampling every t seconds is enough (i.e.,
drop the r component) but it is not: specifically, if a profiler sam-
ples every t seconds, the sampling rate would be synchronized with
any program or system activity that occurs at regular time inter-
vals [17]. For example, if the thread scheduler switches between
threads every 10ms and our sampling interval was also 10ms, then
we may always take samples immediately after a thread switch.
Because performance is often different immediately after a thread
switch than at other points (e.g., due to cache and TLB warm-up ef-
fects) we would get biased data. The random component, r, guards
against such situations.

In order to investigate whether r impacts our profiles, we used
a debug version of Hotspot to record a timestamp whenever the
JVM services a sample on the behalf of a profiler. This results in
a time-series of timestamps that denote when a profiler samples an
application.

Figure 7 gives the autocorrelation[15] graph for when we take
samples with a random component r. Intuitively, autocorrelation
determines if there is a correlation between a sequence of sampling
intervals at one point in the execution and another point in the ex-
ecution. More concretely, if the program run produces a sequence,
(x1, x2, ..., xn), of sampling intervals, Figure 7 plots the correla-
tion of the sequence (x1, x2, ..., xn−k) with (xk, xk+1, ..., xn), for
different values of k (k is often called the “lag”). Because corre-
lation produces a value in the range [−1, 1], the autocorrelation
graphs also range from -1 to 1 (we have truncated the y-axis range
to make the patterns more obvious).

As expected, the autocorrelation graph in Figure 7, when we
take samples randomly from all points in the program run, looks
random. In contrast, consider the correlation graph for hprof
(Figure 8).5 It exhibits a systematic pattern implying that sampling

5 The autocorrelation graphs for the other profilers are similar and thus we
omit them for space considerations.

0 500 1000 1500 2000

−
0

.0
4

−
0

.0
2

0
.0

0
0

.0
2

0
.0

4

a
u

to
c
o

rr
e

la
ti
o

n

lag of series

Figure 8. Autocorrelation for jython using hprof .

intervals at one point in the program run partially predict sampling
intervals at a later point; thus the samples are not randomly picked.

In summary, the autocorrelation graph for our profilers look dif-
ferent from the autocorrelation graph for randomly picked samples.
Thus, our profilers are not using random samples, which is a re-
quirement for getting correct results from sampling. The remainder
of this section explores the cause of this sampling bias.

6.3 What makes the samples not random?

To understand why our profilers were not randomly picking sam-
ples from the program run, we took a closer look at their imple-
mentation. We determined that all four profilers take samples only

at yield points [1]. More specifically, when a profiler wishes to take
a sample, it waits for the program’s execution to reach a yield point.

Yield points are a mechanism for supporting quasi-preemptive
thread scheduling; they are program locations where it is “safe” to
run a garbage collector (e.g., all the GC tables are in a consistent
state [7]). Because yield points are not free, compilers often opti-
mize their placement. For example, as long as application code does
not allocate memory and does not run for an unbounded amount of
time, the JVM can delay garbage collection until after the appli-
cation code finishes; thus, a compiler may omit yield points from
a loop if it can establish that the loop will not do any allocation
and will not run indefinitely. This clearly conflicts with the goal of
profilers; in the worst case, the profiler may wish to take a sample
in a hot loop, but because that loop does not have a yield point,
the profiler actually takes a sample sometime after the execution of
the loop. Thus, the sample may be incorrectly attributed to some
method other than the one containing the loop.

Listing 1 demonstrates this problem. The hotmethod accounts
for most of the execution time of this program and cold accounts
for almost none of the execution time.6 Because hot does not have
any dynamic allocation and runs for a bounded amount of time, the
compiler does not put a yield point in it. There is, however, a yield
point in cold, because it contains a call (compilers conservatively
assume that a call may eventually lead to memory allocation or
recursion). Thus, the cold method incorrectly gets all the samples
meant for the hot method, resulting in a non-actionable profile.
Indeed, the xprof profiler attributes 99.8% of the execution time to
the cold method.

In the above example a yield point-based profiler incorrectly
attributes a callee’s sample to a caller. The problem is actually
much worse: JIT compilers aggressively optimize the placement

6 The key thing about the hot method is that it is expensive compared to
cold and does not have calls or loops. We included this code so you can
try it out yourself! We created this example from a similar situation we
encountered in antlr.

s t a t i c i n t [] a r r a y = new i n t [1 0 2 4] ;
p u b l i c s t a t i c void ho t (i n t i) {

i n t i i = (i + 10 ∗ 100) % a r r a y . l e n g t h ;
i n t j j = (i i + i / 33) % a r r a y . l e n g t h ;
i f (i i < 0) i i = − i i ;
i f (j j < 0) j j = − j j ;
a r r a y [i i] = a r r a y [j j] + 1 ;

}
p u b l i c s t a t i c void c o l d () {

f or (i n t i = 0 ; i < I n t e g e r .MAX VALUE; i ++)
ho t (i) ;

}
}

Listing 1. Code that demonstrates the problem with using yield
points for sampling

a
n

tl
r

b
lo

a
t

c
h

a
rt

fo
p

jy
th

o
n

lu
in

d
e
x

p
m

d

m
e

a
n

0

10

20

30

40

50

60

70 hprof

jprofile

yourkit

a
b

s
(x

 −
 y

)

Figure 9. The observer effect due to profilers

of yield points and unrelated optimizations (e.g., inlining) may
also affect the placement of yield points. Consequently, a profiler
may attribute a method’s samples to another seemingly unrelated
method.

6.4 But why do profilers disagree?

While the above discussion explains why our profilers produce non-
actionable profiles, it does not explain why they disagree with each
other. If the profilers all use yield points for sampling, they should
all be biased in the same way and thus produce the same non-
actionable data. This section shows that different profilers interact
differently with dynamic optimizations, which results in profiler
disagreement.

Any profiler, by its mere presence (e.g. due to its effect on
memory layout, or because it launches some background threads),
changes the behavior of the program (observer effect). Because dif-
ferent profilers have different memory requirements and may per-
form different background activities, the effect on program behav-
ior differs between profilers. Because program behavior affects the
virtual machine’s dynamic optimization decisions, using a different
profiler can lead to differences in the compiled code.

These differences relate to profiler disagreement in two ways:
(i) directly, because the presence of different profilers causes dif-
ferently optimized code, and (ii) indirectly, because the presence of
different profilers causes differently placed yield points. While (i)
directly affects the performance of the program, (ii) does not affect
program performance, but it affects the location of the “probes”
that measure performance. Our results in Section 7 suggest that (ii)
contributes more significantly to disagreement than (i).

Figure 9 illustrates how turning on different profilers changes
xprof ’s profile of a program. The graph in Figure 9 has one set of
bars for each benchmark and each set has one bar for each of the
hprof , jprofile, and yourkit profilers (avg of 30 runs). The height
of the bar quantifies the profiler’s effect on xprof ’s profile for the
hottest method, M. If xprof attributes x% of execution time to M
when no other profiler is running and y% of execution time to M
when a profiler, P , is also running, then P’s bar will have height
abs(x − y), where abs computes the absolute value.

From this graph we see that profilers significantly and differ-
ently affect the time spent in the hottest method (according to
xprof). The observer effect caused by the different profilers influ-
ences where the JIT places yield points. To quantify the observer
effect, we used a debug build of Hotspot to count the number of
yield points the JIT places in a method. For example, when we pro-
file with xprof , the JIT placed 9 yield points per method for the
hottest 10 methods of antlr, on average. When we used hprof , the
JIT placed 7 yield points per method.

Although the data in Figure 9 illustrates how xprof ’s profiles
change when other profilers simultaneously collect profiles, we
see similar behavior when xprof is replaced by one of the other
profilers.

In summary, the observer effect due to profilers affects opti-
mization decisions, which affects the placement of yield points,
which in turn results in different biases for different profilers.

7. Testing our hypotheses

The previous sections hypothesized that our profilers produce non-
actionable profiles because (i) they sample at yield points which
biases their profiles and (ii) they interact with compiler optimiza-
tions which affects both program performance and the placement of
yield points. This section presents results from a proof-of-concept
profiler that does not use yield points and shows that this profiler
produces actionable profiles.

7.1 Implementation

Our proof-of-concept profiler, tprof , collects samples randomly
using a t of 10ms and r being uniform random numbers between
−3ms and 3ms (Section 6.2). tprof has two components: (i) a
sampling thread that sleeps for the sampling interval (determined
by adding t and a random number, r, for each sample) and then uses
standard UNIX signals to pause the Java application thread and take
a sample of the current executing method; and (ii) a JVMTI agent
that builds a map of an x86 code address to Java methods so that
tprof can map the samples back to Java code.

We encountered three challenges in implementing tprof .
First, the JIT may recompile methods and discard previously

compiled versions of a method, therefore a single map from Java
code to x86 instructions is not enough. Instead, we have different
maps at different points in the program execution and the samples
also have a timestamp so tprof knows which map to use.

Second, tprof operates outside of the JVM and therefore it
does not know which method is executing when it samples an
interpreted method. As a consequence, tprof attributes all samples
of interpreted code into a special “interpreted method”. This is a
source of inaccuracy in tprof ; we believe this inaccuracy will be
insignificant except for short-running programs that spend much of
their time in the interpreter.

Third, Sun Hotspot does not accurately report method locations
when inlining is turned on. Thus, we cannot reliably use tprof if
inlining is enabled.

The latter two limitations are implementation artifacts and not
a limitation of profilers that use random sampling. Indeed, tprof
is not meant to be a production profiler; its purpose is to support

Bmark Method slope

tprof hprof xprof jprof

antlr CharBuffer.fill 1.00 0.78 0.78 0.78
CharQueue.elementAt 1.00 0.00 0.00 0.00

bloat PrintWriter.print 1.00 0.01 0.00 0.00
PrintWriter.write 0.88 0.56 0.23 0.49

chart ByteBuffer.append 0.99 0.91 0.89 0.65
ByteBuffer.append i 0.99 0.00 0.00 0.00

fop PropertyList.findMaker 0.97 0.00 0.00 0.00
PropertyList.findProperty 1.00 0.00 0.00 0.01

jython PyType.fromClass 0.99 0.00 0.00 0.00
PyFrame.setlocal 0.99 0.00 0.00 0.00

luindex jjCheckNAddTwoStates 0.99 0.97 0.97 0.98
StandardTokenizer.next 1.00 0.01 0.01 0.01

pmd NodeIterator.getFirstChild 1.00 0.79 0.75 0.87
JavaParser.jj scan token 1.00 0.01 0.00 0.00

mean across methods 0.99 0.29 0.26 0.27

Table 3. Slope from the linear regression for Fibonacci injection
(no inlining)

and validate our claim that a Java profiler can produce actionable
profiles by ensuring its samples are taken randomly.

7.2 Evaluating tprof with automatic causality analysis

From Table 2 we know that hprof , xprof , and jprofile do not pro-
duce actionable profiles; specifically, they do not correctly attribute
the increase in program execution time to the increase in the time
spent computing the Fibonacci sequence. We now evaluate tprof
using the same methodology.

Table 3 is similar to Table 2 except that (i) it includes data for
tprof along with hprof , jprofile, and xprof ; and (ii) we disabled in-
lining in the JVM when collecting data for this table (Section 7.1).

First we notice that hprof , xprof , and jprofile all perform
slightly better without inlining than with inlining; Section 6.4 ex-
plains the reason for this. However, even with inlining disabled,
these profilers usually produce non-actionable data.

From the tprof column we see that tprof performs nearly per-
fectly: it correctly attributes the increase in program execution time
to an increase in the time spent in the method that calculates the
Fibonacci sequence.

To increase the generality of our results, we repeated the above
experiment, this time injecting a different computation. Specifi-
cally, we injected code that allocates an array of 1024 integers and
loops over a computation that adds two randomly selected elements
of the array. The motivation behind this computation—rather than
Fibonacci—is to demonstrate that our results are not specific to
one particular type of injected computation. By allocating memory,
our injected code has side effects that may impact other aspects of
the runtime system (e.g. garbage collection, compilation, ...) and in
turn may affect whether a profiler is actionable. Despite these side
effects, once again we found that other profilers did poorly (with
slopes ranging from 0.18 to 0.37) while tprof performed nearly
perfectly (with slope of 1.02)7.

We had posed three hypotheses for explaining non-actionable
data from the profilers: (i) reliance on yield points which led to bias
(Section 6.3), (ii) interactions with optimizations which directly af-
fected profiles (Section 6.4), and (iii) interactions with optimiza-
tions which affected the placement of yield points and thus bias
(Section 6.4). Our results indicate that tprof , which addresses (i)
and (iii) (but not (ii)), performs nearly perfectly.

7 We have omitted the full set of results due to space limitations.

7.3 Evaluating tprof with real case studies

The previous section used causality analysis with synthetic inter-
ventions to evaluate the benefit of tprof ’s sampling strategy com-
pared to hprof ’s, xprof ’s, and jprofile’s sampling strategy. This
section uses realistic interventions instead of the synthetic inter-
ventions to make the same comparison.

7.3.1 Speeding up pmd by 52%

tprof reported that java.util.HashMap.transfer was the hottest
method accounting for about 20% of overall execution time of
pmd. In contrast, xprof reported that the method took up no execu-
tion time and the other profilers (hprof , jprofile, yourkit) reported
that three other methods were hotter than this method.

On investigation, we found that pmd creates a HashMap using
HashMap’s default constructor and then adds many elements to
the HashMap. These addition cause the HashMap to repeatedly
resize its internal table, each time transferring the contents from
the smaller table to the larger table. Based on tprof ’s report, we
changed the HashMap allocation to use the non-default construc-
tor which pre-allocated 100K entries for the table, thus decreasing
the number of times it has to resize the table.

This one line code change sped up the program by 52% with
inlining (i.e., the default configuration for the JVM) and 47% with-
out inlining8. These performance improvements actually exceed
tprof ’s prediction of 20%. We expect this is because reducing the
resizings also reduced the amount of memory allocation. This in
turn translated to better memory system and garbage collector per-
formance.

7.3.2 Speeding up bloat by 50%

tprof reported that java.util.AbstractMap.containsValue was the
hottest method accounting for 45% of program execution time in
bloat. The other profilers reported that AbstractMap.containsValue
took up 22% of program execution time and reported that other
methods were hotter.

On investigation we found that bloat frequently calls Ab-
stractMap.containsValue as part of an assertion. AbstractMap.-
containsValue does a linear search through the values of a map
and thus takes time proportional to the number of values in that
map. We removed this call by commenting out the assert statement
(this does not affect behavior of the program, just the checking of
program invariants at run time).

As a result of this change, bloat sped up by 50% with inlining
and 47% without inlining. tprof immediately directed us to this
method as the slowest method and even predicted the speedup
we got (within 2%). If we had followed the advice of the other
profilers, we would still have found this method but not before we
had looked at several other methods first.

7.4 Summary

Using a combination of synthetic and real causality analysis, we
have demonstrated that a proof-of-concept profiler, tprof , which
uses random sampling, produces actionable data.

8. Related work

We now review prior work on evaluating profilers and the common
approaches used to implement profilers.

8 We report the performance improvements with both the default JVM
configuration and the one with inlining disabled because we collected the
profiles with inlining disabled; recall that tprof cannot currently handle
inlining.

8.1 Evaluating profilers

If we know the correct profile, we can precisely evaluate the accu-
racy of a profiler. For example, call frequencies for a deterministic
program are a property of the program and its inputs and should not
depend on the profiler. Arnold and Grove [2] exploit this insight
to evaluate their lightweight (but not perfectly accurate) method
for measuring call frequencies. Other papers use similar insights
to evaluate their profilers (e.g., [9, 18]). Unfortunately, for timing
data (which we focus on) there is no “correct” profile; this is why
we need to resort to actionable.

If we have a particular use for a profiler in mind, then we can
evaluate a profiler with respect to how the profiler supports that use.
For example, Rubin et al. [22] evaluate a profiler by the amount of
speedup they get from data layout optimizations. This is a form of
causality analysis, which is one of the techniques that we also use.

In work concurrent to ours Chen et al. [6] find that sampling
with hardware performance monitors often produces biased pro-
files. Indeed, in their work, they find that randomizing the sampling
period of their hardware profiler allows them to produce more ac-
curate profiles. Like Arnold and Grove, Chen et al. compare the
accuracy of their sampled profile to a perfect profile obtained using
expensive instrumentation. While Chen et al. evaluate profilers that
collect edge or basic block profiles, our work focuses on profilers
that produce timing data.

Finally, Whaley evaluates a profiler based on whether or not
different runs of the same profiler agree with each other [25]. This
approach determines whether or not a profiler is consistent with
itself, but does not say anything about profiler accuracy: e.g., a
profiler that consistently produces incorrect results will score high
according to Whaley’s criteria.

8.2 Implementation of profilers

Broadly speaking, profilers work by either instrumenting the code
or by sampling.

For example, Dmitriev’s profiler [8], as well as at least some
versions of the Netbeans and Eclipse TPTC profilers [20, 10], in-
strument the program. This approach typically yields huge program
slow down; in our experience, we get 1000x slow down if we in-
strument all methods. For this reason, these profilers only profile
methods that the user explicitly specifies, thus reducing their over-
head to a more reasonable level. In our experience, these techniques
suffer significantly from the observer effect and thus we did not
consider these profilers in our study.

For example, gprof [13] uses sampling for C and C++ programs.
Moreover, unlike the Java profilers we considered, gprof uses an
OS timer to generate samples every 10ms and thus does not suffer
from the biased samples that we get when we use yield points.9

Implementing a timer-based profiler is much easier for C and C++
than it is for Java; as we discussed in Section 7.1, Java introduces
many challenges (e.g., dynamically generated code) that makes it
difficult to map samples back to user code. Perhaps this is the
reason why all the Java profilers we know of use yield points
for sampling. Nevertheless, this paper shows how we can collect
random samples even for Java programs.

8.3 Improving the state-of-the-art in performance analysis

There has been much work on improving experimental methodol-
ogy in various areas of computer science.

Blackburn et al. [4] find that the prevalent methodology for
evaluating garbage collectors is misleading. Specifically, using a
single heap size often biases the evaluation of a garbage collector;

9 Gprof does not randomize its sampling interval which could bias its
results.

thus Blackburn et al. suggest using many heap sizes instead of just
one.

Georges et al. [12] demonstrate the importance of using statis-
tical methods for interpreting performance results. Mytkowicz et
al. [19] show how seemingly innocuous factors (e.g., environment
variables) can bias performance results.

Buytaert et al. [5] is the closest paper to ours. It makes the
point that yield points are a poor choice for sampling in profiler-
guided optimizers (which are common in Java virtual machines).
The reasons they give for this are consistent to ours. Buytaert et al.
also compare the accuracy of their HPM-based profiler to a base-
line profiler which uses the hardware performance monitor (HPM)
to trigger sampling at a high rate. Our paper complements Buy-
taert’s paper by (i) we show that yield points severely compromise
the results produced by commonly-used Java profilers in two pro-
duction virtual machines; Buytaert et al. use JikesRVM for their
experimentation and do not experiment with different profilers; (ii)
we use causality analysis to directly evaluate the correctness of the
profilers; Buytaert et al.’s evaluation of profiler accuracy assumes
that a profiler with a high-sampling rate using HPM is “correct”,
which may or may not be the case; and (iii) we show that the ob-
server effect due to profilers leads to disagreement between profil-
ers.

In summary, the above papers all attempt to improve experimen-
tal methodology in computer science. This paper shares the same
goals by tackling a different profiling problem than the earlier pa-
pers.

9. Conclusion

What do we do when our program has a performance problem?
We use a profiler to find the hot methods in the program and then
optimize these methods to speed up the program. If the program
does not speed up as predicted by the profile, we typically blame
it on a poor interaction with the memory system or our lack of
understanding of the underlying hardware, but we never blame the
profiler. In this paper, we surprisingly demonstrate that four state-
of-the-art Java profilers (xprof , hprof , jprofile, and yourkit) often
produce incorrect profiles.

We use causality analysis to determine two reasons for why
the four profilers produce incorrect profiles. First, the profilers
only sample at yield points, a JVM mechanism for supporting
maintenance operations such as garbage collection. Only taking
samples at yield points introduces bias into a profile. Second, the
profilers perturb the program being optimized (i.e. observer effect)
and thus change how the dynamic compiler optimizes the program
and places yield points in the optimized code.

Our results are disturbing because they indicate that profiler in-
correctness is pervasive—occurring in most of our seven bench-
marks and in two production JVM—-and significant—all four of
the state-of-the-art profilers produce incorrect profiles. Incorrect
profiles can easily cause a performance analyst to spend time opti-
mizing cold methods that will have minimal effect on performance.
We show that a proof-of-concept profiler that does not use yield
points for sampling does not suffer from the above problems.

Acknowledgments

Thanks to Devin Coughlin, Michael Hind, Robert Hundt, Tipp
Moseley, Rhonda Hoenigman, Dick Sites, and Manish Vachhara-
jani for thoughtful discussions and feedback on this work. This
work is supported by NSF grant NSF CSE-0509521. Any opin-
ions, findings and conclusions or recommendations expressed in
this material are the authors’ and do not necessarily reflect those of
the sponsors.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D.
Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith, V. C. Sreedhar,
H. Srinivasan, and J. Whaley. The Jalapeño virtual machine. IBM

Systems Journal, 39(1):211–238, February 2000.

[2] M. Arnold and D. Grove. Collecting and exploiting high-accuracy
call graph profiles in virtual machines. In Proc. of Int’l Symposium on

Code Generation and Optimization, pages 51–62, Los Alamos, CA,
March 2005. IEEE Computer Society.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo benchmarks: Java benchmarking
development and analysis. In Proc. of ACM SIGPLAN Conf. on

Object-Oriented Programing, Systems, Languages, and Applications,
pages 169–190, Portland, OR, Oct. 2006. ACM.

[4] S.M. Blackburn, P. Cheng, and K.S. Mckinley. Myths and realities:
The performance impact of garbage collection. In Proc. of ACM

SIMETRICS Conf. on Measurement and Modeling Computer Systems,
pages 25–36, New York, NY, Jan. 2004. ACM.

[5] D. Buytaert, A. Georges, M. Hind, M. Arnold, L. Eeckhout,
and K. De Bosschere. Using HPM-sampling to drive dynamic
compilation. In Proc. of ACM SIGPLAN Conf. on Object-Oriented

Programing, Systems, Languages, and Applications, pages 553–568,
Montreal, Canada, Oct. 2007. ACM.

[6] Dehao Chen, Neil Vachharajani, and Robert Hundt. Taming hardware
event samples for fdo compilation. International Symposium on Code

Generation and Optimization (CGO), 2010.

[7] A. Diwan, E. Moss, and R. Hudson. Compiler support for garbage
collection in a statically typed language. SIGPLAN Not., 27(7):273–
282, 1992.

[8] M. Dmitriev. Selective profiling of Java applications using dynamic
bytecode instrumentation. In Proc. of IEEE Int’l Symposium on

Performance Analysis of Systems and Software, pages 141–150,
Washington, DC, March 2004. IEEE.

[9] E. Duesterwald and V. Bala. Software profiling for hot path
prediction: less is more. SIGPLAN Not., 35(11):202–211, 2000.

[10] Eclipse: Open source java profiler v4.6.1. http://www.eclipse.org/tptp/.

[11] Ej technologies: Commercial java profiler. http://www.ej-
technologies.com/products/jprofiler/overview.html.

[12] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java
performance evaluation. In Proc. of ACM SIGPLAN Conf. on Object-

oriented Programming, Systems, Languages and Applications, pages
57–76, Montreal, Canada, Oct. 2007. ACM.

[13] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call
graph execution profiler. In Proc. of ACM SIGPLAN Symposium on

Compiler Construction, pages 120–126, Boston, Mass., 1982. ACM.

[14] D. Gu, C. Verbrugge, and E. Gagnon. Code layout as a source of
noise in JVM performance. Studia Informatica Universalis, pages
83–99, 2004.

[15] R. Hegger, H. Kantz, and T. Schreiber. Practical implementation
of nonlinear time series methods: The TISEAN package. Chaos,
9(2):413–435, 1999.

[16] Sam Kash Kachigan. Statistical Analysis: An Interdisciplinary

Introduction to Univariate & Multivariate Methods. Radius Press,
1986.

[17] S. Mccanne and C. Torek. A randomized sampling clock for CPU
utilization estimation and code profiling. In Proc. of the Winter

USENIX Conf., pages 387–394, San Diego, CA, Jan. 1993.

[18] T. Moseley, A. Shye, V.J. Reddi, D. Grunwald, and R. Peri. Shadow
profiling: Hiding instrumentation costs with parallelism. In Proc.

of Int’l Symposium on Code Generation and Optimization, pages
198–208, Washington, DC, March 2007. IEEE Computer Society.

[19] T. Mytkowicz, A. Diwan, M. Hauswirth, and P.F. Sweeney. Producing
wrong data without doing anything obviously wrong! In Proc. of Int’l

Conf. on Architectural Support for Programming Languages and

Operating Systems, pages 265–276, Washington, DC, March 2009.
ACM.

[20] Netbeans: Open source java profiler. v6.7. http://profiler.netbeans.org/.

[21] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge
University Press, 1st edition, 2000.

[22] S. Rubin, R. Bodı́k, and T. Chilimbi. An efficient profile-analysis
framework for data-layout optimizations. SIGPLAN Not., 37(1):140–
153, 2002.

[23] hprof: an open source java profiler. http://java.sun.com/developer/
technicalArticles/Programming/HPROF.html

[24] xprof: Internal profiler for hotspot. http://java.sun.com/docs/books/
performance/1st edition/html/JPAppHotspot.fm.html.

[25] J. Whaley. A portable sampling-based profiler for java virtual
machines. In Proc. of Conf. on Java Grande, pages 78–87, New
York, NY, 2000. ACM.

[26] Yourkit, llc: Commercial java profiler. http://www.yourkit.com/.

	Introduction
	Motivation
	Experimental methodology
	Profilers
	Benchmarks
	How to evaluate profilers
	Platform
	Measurements

	Extent of the problem
	Metrics for quantifying profiler agreement
	How frequently do profilers disagree?
	Profilers disagree on the hottest method
	Profilers disagree on the hottest n methods

	By how much do profilers disagree?
	Is profiler disagreement innocuous?
	Is the JVM the cause of profiler disagreement?
	Summary

	Causality analysis
	The intervene and profile steps
	The validate step

	Understanding the cause of profiler disagreement
	The assumption behind sampling
	Do our profilers pick samples randomly?
	What makes the samples not random?
	But why do profilers disagree?

	Testing our hypotheses
	Implementation
	Evaluating tprof with automatic causality analysis
	Evaluating tprof with real case studies
	Speeding up pmd by 52%
	Speeding up bloat by 50%

	Summary

	Related work
	Evaluating profilers
	Implementation of profilers
	Improving the state-of-the-art in performance analysis

	Conclusion

