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In this dissertation, we address the problem of program analysis of event-driven applications to au-

tomatically prove safety properties. Event-driven applications refer to software that responds to external

events such as user interface interactions, sensors, and more. Such applications are typically written against

a common event-driven framework responsible for interfacing with the hardware and operating system.

These event-driven frameworks offer an impressive array of functionality expediting the process of develop-

ing software, improving the security and privacy of the end user, and more. Due to the size and complexity

of such event-driven frameworks as well as the hardware and operating system, it is often difficult for a

developer to understand what the application and framework may do at runtime. This added complexity can

easily result in unwanted application behavior known as defects or crashes.

Automatic program analysis is a broad range of techniques designed to assist developers both with

proving the absence of defects or finding and explaining defects. However, such program analysis techniques

have the same difficulties understanding the framework as a developer with event-driven applications. Due to

the size, complexity and language features, the framework cannot be directly analyzed. Therefore, a program

analysis needs a model of the event-driven framework behavior to be provided. Prior work has focused on

manually modeling the behavior of such event-driven frameworks so that existing whole-program analysis

techniques may be used. If these framework models are imprecise, the analysis will flag defects that do not

exist. Similarly, an unsound model will cause an analysis to miss real defects.

The overall contribution of this dissertation centers around minimizing the effort required to model

event-driven frameworks while maximizing the ability of event-driven program analysis to distinguish de-

fects from correct code. Central to our contribution is that the interactions between the application and

event-driven framework is the most effective location to describe framework behavior and abstract the exe-
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cutions possible in an application. We call the interactions between the application and the framework the

message history. Such message histories can be used to define the order of events that are possible in an

event-driven framework and to effectively abstract application behavior.

In this dissertation, we first contribute a method of framework modeling to soundly capture the be-

haviors needed for sound and precise verification. These models are targeted meaning they capture only

as much of the framework behavior as is needed to prove the safety property of interest. Any property

not relevant to safety may be left unspecified resulting in a sound over-approximation of the framework

and a syntactically simpler model. Next, we present a method of application-only program analysis that

may prove a safety property using a framework model and application. Such an analysis may start with a

sound over-approximation of all possible framework behavior and refine the model as needed. To support

these framework models, we present two separate methods of validating framework models, with recorded

message histories or simply by proving reachability of known defects or other program points. Finally, we

can combine all of these techniques to automatically generate framework models through program synthe-

sis. Given a large enough sample size of observed crashes or other logged behavior, we can automatically

exclude unsound models. Then, through a process of carefully pruning the space of possible models, we

can automatically select a sound model precise enough to prove a safety property. We evaluate each of

these techniques on a corpus of defects found in real open-source Android applications demonstrating the

practicality of our techniques.
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Tables

Table

3.1 Precision of callback control-flow models. The sensitive callin column lists protocol prop-

erties by the callin that crashes the app when invoked in a bad state. We collect a total of

50 traces from 5 applications with no crashes. The sensitive column lists the number of

traces where the application invokes a sensitive callin. To provide a baseline for the preci-

sion of a model, we count the number of traces without a manually-confirmed real bug in

the verifiable column. There are four columns labeled verified showing the number and

percentage of verifiable traces proved correct using different callback control-flow models.

The lifestate columns capture our contribution. The lifecycle++ columns capture the current

practice for modeling the Android framework. The bad column lists the number of missed

buggy traces and is discussed further in RQ2. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 The table shows the precision results for the 1577 non-crashing traces that contained a sen-

sitive callins from a total of 2202 traces that we collected from 121 distinct open source

app repositories. We note that lifestate takes slightly longer than lifecycle; for this reason,

lifestate performs slightly worse than lifecycle for execute. The bad column is 0 for mod-

els other than lifecycle++ because of continuous validation. Note that out of 64 total buggy

traces, lifecycle++ missed 27 bugs (i.e., had a 42% false-negative rate). . . . . . . . . . . . 74
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4.1 The rows of this table are split into Bug and Fix benchmarks for each pattern. We first list

the number of callbacks, callback returns, or callins that could be captured by a history im-

plication in the framework model. Next, we list the number of history implications (specs)

written for the benchmark (listed in section A.4), then, we show how many of the messages

are in the specification. The depth captures how many times Historia needed to step back-

wards through a callback (e.g. Figure 2.8 shows 4 steps back). Historia alarms on all the

bug versions (circled exclamation point), and refutes reachability of the bug assertion for 4

out of the 5 bug-fixes (circled check mark). In the last case, Historia explored up-to 5 call-

backs before timing out at 30 min (circled five). For the comparison with ideal tools using

the “no-order” and “eager” modeling approaches, some results are labeled false-check for a

false proof and false-exclamation for a false alarm. . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Verifying usages of the multi-callback patterns among 47 open-source Android apps with

only the exception property. We list the results by alarms where Historia finished but could

not prove the property, timeouts where Historia took over half an hour, and safe where no

further specification was needed. We list the number of app methods that are contained

in the call graphs of both Historia and Flowdroid. There were 9 apps that timed out with

Flowdroid. Among the 38 apps that Flowdroid could finish on, it found 28k application

methods as compared to 70k application methods found by Historia. . . . . . . . . . . . . . 108

4.3 We sampled 8 locations that could not be proven from Table 4.2 and attempted to add

CBCFTL specifications to prove them safe. These are listed by app name as all samples

were chosen so the apps are unique; specific locations app versions and links may be found

in section A.4. ∗The Connectbot benchmark here was a timeout in Table 4.2; we manually

removed callbacks to help find the alarm and understand the bug, while the benchmarks

were unmodified. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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5.1 A list of common runtime problems in Android applications acquired from online blog posts.

The first column contains a name for the defect (described further in the evaluation text).

We then list the number of callbacks, callins, total messages, and lines in each benchmark.

The ”Multi CB” column lists whether reaching the error depends on state from multiple

different callbacks. The WiStoria column captures whether we can write down the property

for WiStoria using CBCFTL and our fragment of separation logic. . . . . . . . . . . . . . . 132

5.2 Error conditions for each benchmark. For error conditions where a message is called at the

wrong time, we give a specification of an error result similar to the overview example. The

exn is used to generally indicate a message occurring in an order that results in a defect (note

that many of these benchmarks do not explicitly throw exceptions). For error conditions

about the memory state, we specify an error condition with separation logic and temporal

formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Execution histories generated by WiStoria and runtime instrumentation. For WiStoria we

first list the size of the CBCFTL specification (specified msg), then if the history is realistic

(i.e. can we remove unrelated events and match the runtime history), and finally the length

of the history. We then list the number of attempts to reproduce each defect on the Android

emulator as well as the lengths of the recorded histories. . . . . . . . . . . . . . . . . . . . 134

5.4 Here, we summarize the results of Infer and Pulse on the benchmarks. Infer successfully

detected the defect in Fragment Lifecycle and Pulse did not find any of the defects. . . . . . 135

6.1 Benchmarks demonstrating fixes for issues in widely-used open-source Android applica-

tions. We were able to synthesize framework models sufficient to prove each fix and doc-

ument the size of the starting specification as well as the size of the learned model and the

performance of the synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
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Figures

Figure

1.1 A crash and stack trace reported to the issue tracker of the Antennapod application [41]. The

stack trace only lists a single event from the application – the onClick callback. The call site

for onClick in the method handleMessage is not even defined in the development environ-

ment and is only linked with the application when it is installed on an Android phone. How

can we capture when the onClick callback may occur and whether a potential fix prevents

this issue? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.2 A sketch showing how the Antennapod application interacts with the event-driven Android

framework. On the left-hand side, is the Android framework displaying the user interface

confirming the user’s intent to remove a podcast feed. The right-hand side represents a

portion of the Antennapod application that defines two callbacks for the “OK” and “Can-

cel” buttons. In the center, is the message history capturing the interaction between the

two. First, the application uses makeButton to display both the “OK” and “Cancel” buttons.

This action also associates the Remove Action with the “OK” button and Dismiss Action

with the “Cancel” button. When the user taps the “OK” button, the framework invokes the

onClick with the Remove Action. Which starts the removal of the feed and dismissing the

dialog with finish. The crash occurs if the user taps the button a second time, quickly in-

voking another onClick with the Remove Action. The developer fixes this application by

adding okButton.setEnabled( false ) to disable the button. But how do we know that this

fix is correct? The behavior of finish and setEnabled are hidden in the framework and the

OK Button identifier used by setEnabled is not shared with the offending onClick. . . . . . . 5

2.1 An example defect and fix in the Antennapod application, where a background task may

be started twice by the execute method. This results in a crash on Line 14. Each method

in red is a callback (i.e. onClick and onCreate) that responds to external events. The error

occurs because, counterintuitively, finish does not prevent a future call to onClick, allow-

ing two onClick callbacks to occur. The fix that was accepted disables the button using

setEnabled( false ), shown on Line 17. This example is challenging for program analysis

because of the need to model the behavior of the setEnabled( false ) method and the need

of precise aliasing analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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2.2 The sequence of execution causing the crash. We show three parts of the execution: the

user interface (UI) which draws the buttons and dialog, the event loop which queues and

executes events, and the application (App). The second click causing the error is possible

because the “Finish” event is still in the queue and has not affected the “Click” event. In the

fixed version, setEnabled( false ) actively removes the corresponding “Click” events from

the queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 The key to modeling the framework is capturing the enabledness of each message paired

with the corresponding identifiers. On the left-hand side of the figure, we list the set

of enabled callbacks or the callbacks that may be non-deterministically selected to hap-

pen next. Each time a message occurs, our execution model updates the enabled and al-

lowed set accordingly. Messages that were just disabled are indicated by being crossed

out (e.g. cb a.onCreate () self-disables as indicated by cb a.onCreate () in the enabled

set). Importantly, for the correct functioning of the fix, ci bok.setEnabled( false ) disables

cb a.onClick() . By reasoning about the enabled and allowed sets, we simplify the complex

process of heap updates, native code, and more that manage the event loop. . . . . . . . . . 21

2.4 A common approach to modeling the Android framework is to use an automata of callbacks.

Above, we show the Activity lifecycle automaton from the Android documentation [4]

(solid black lines) augmented with the button onClick (short dashed blue lines). Unfortu-

nately, such models are not precise enough to prove the fixed version of our example safe.

Worse yet, the finish method can cause a variety of unexpected callback ordering including

the edges shown as long dashed red lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Any message history from any application that contains these three messages in this order

shows History Implication 3 to be unsound. This could be from the message history ob-

served in the crashing execution shown earlier (Figure 2.2), or it may be from a completely

unrelated application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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2.6 An application-only transition system constructed from our motivating example. Each call-

back is connected to a central framework location and boundary transitions are added at the

invocation of callbacks and callins as well as their returns. . . . . . . . . . . . . . . . . . . 30

2.7 An inductive invariant for the fixed app consisting of abstract message histories and abstract

app states at each location in the application-only transition system (Figure 2.6) that may

reach the assertion failure. For brevity, this figure excludes less interesting transitions such

as the case where the failing call invocation is preceded by another invocation of call . How-

ever, all transitions are considered by the verifier. The abstract message histories only show

messages from the user provided specification for clarity. Note, there is only one framework

location and that we use the subscripts (e.g., Fwk1, Fwk2) to indicate disjunctive elements

of the abstract state at the framework location. With the specification of realizable message

histories (section 2.2) combined with the abstract message histories (subsection 2.3.3), we

can show that this invariant has reached a fixed point and that it excludes the initial state

proving the assertion safe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 The invariant map used to prove that a message history reaches the defect in the buggy

version of our example. This invariant map largely follows the same pattern but now only

represents concrete states that must step to the error location. The main changes from the

verification are that the new calls must be precisely tracked. For example, with Historia

heap cells could be soundly summarized (dropped from the formula) which is not possible

here. Upon reaching Fwk3 we have found an abstract state that must include the initial state

and represents a message history reaching the defect. . . . . . . . . . . . . . . . . . . . . . 40

2.9 We enumerate the syntactic expansions of CBCFTL formula and test them against our cor-

pus of reachable locations and the target location to verify. On each candidate model, the

model may be: (1) Unsound if known reachable locations are not reachable under the model,

(2) Un-targeted if a clause can never be true in the available issues, (3) Live if there is still

a possibility of expanding, or (4) Successful if the model proves the location while not ex-

cluding known reachable locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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2.10 A history implication is connected if there is a path between shared variables for every

message starting at the target message. Such connected history implications ensure that a

framework model explains the enabledness of a message. In this example, the connections

explain which onClick listener is disabled when a given button is disabled. . . . . . . . . . . 49

2.11 The message graph for the fixed version of Figure 1.1 shows each message that the ap-

plication may emit at runtime (under any framework implementation) as nodes and edges

between arguments if they may be aliased at runtime. We argue that messages that connect

edges from existing messages in history implications are the most likely to be useful for

proving a target issue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 A non-crashing history of execution for the overview example 2.1. In this section, we show

how models may be written that are precise enough to distinguish crashes and fixes among

rearrangements of such executions while accommodating all observed framework behavior. . 53

3.2 λlife, a core model of event-driven programs capturing enabledness of events and disal-

lowedness of invocations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 The instrumented transition relation σ
−→

m σ′ defines the app-framework interface and

observing the event-driven protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Lifestate was the predecessor and inspiration for the more concise CBCFTL. . . . . . . . . . 62

3.5 This transition system defines an abstraction of the framework-internal state consistent with

an observable trace ω with respect to a framework abstraction S. The abstract state σ̂ con-
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Chapter 1

Introduction

Event-driven programming [82, 90, 65] is a widely used programming model where an application

repeatedly reacts to events from the environment or operating system. Events may contain a wide variety

of information, for example: devices with user interfaces use events to display information and receive user

input, sensors connected to computers report physical properties of the environment as events, or asyn-

chronous tasks resulting in events for updates and completion. Such interaction with the external world

makes programs extremely versatile but comes at the cost of added complexity. This added complexity

makes testing and developing such software extremely difficult, often resulting in software defects. Soft-

ware defects may come in the form of crashes, security vulnerabilities, slow performances, and more. This

dissertation addresses the problem of automatically finding or proving the absence of such defects when

software must interact with events.

In this programming model, applications are implemented as a set of callbacks, or methods that are

invoked as external events occur. In event driven applications, the control flow between callbacks are not de-

termined exclusively by the program code; instead, it is significantly shaped by the sequence and occurrence

of external events. An event-driven framework is responsible for interfacing with the hardware and operating

system to invoke these callbacks. Callback control flow is difficult for classical program verifiers because

the event-driven framework cannot be analyzed directly. Event-driven frameworks use language features

that are known to be difficult for program analysis, interact heavily with the operating system, and may de-

pend on the hardware running an application. Therefore, the primary challenge with precise and automatic

program analysis in event-driven applications is determining how control flows between callbacks.
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Android is a useful example of event-driven programming since it is extremely common with over 3

billion active users [21] and 24,000 distinct Android devices (mostly phones) [53]. This dissertation explains

the challenges and how effective program analysis may be applied using a crash and fix from the Antennapod

Android application. The techniques we present are applicable to a wide variety of components common to

event-driven frameworks such as background tasks, network, and more. This particular example focuses on

the user interface component of the Android framework.

java.lang.IllegalStateException: Cannot execute task: the task is already running.

at android.os.AsyncTask.execute(AsyncTask.java:576)

at de.danoeh. ... .ConfirmationDialog$1.onClick(ConfirmationDialog.java:56)

at com.android. ... .ButtonHandler.handleMessage(AlertController.java:167)

...

Figure 1.1: A crash and stack trace reported to the issue tracker of the Antennapod application [41]. The

stack trace only lists a single event from the application – the onClick callback. The call site for onClick

in the method handleMessage is not even defined in the development environment and is only linked with

the application when it is installed on an Android phone. How can we capture when the onClick callback

may occur and whether a potential fix prevents this issue?

The stack trace for the Antennapod application (Figure 1.1) gives a human-readable explanation of

the methods involved in the crash. In particular, this crash is caused by AsyncTask, an Android utility for

encapsulating long-running tasks. In order to avoid concurrent access to the memory used by these tasks,

an AsyncTask instance may only be started without error execute once. For our explanation, AsyncTask

may simply be thought of as an arbitrary object that can only be used once (i.e. a linear resource). Next,

the stack trace lists the methods that were invoked at the time of the crash starting with execute at the

top. The execute callin is called when the user clicked a button on a ConfirmationDialog invoking an

onClick callback. Since the onClick callback is the only place in the Antennapod application that can start

this background task, the crash must have occurred because onClick happened twice. Typically, a dialog
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disappears when a button is clicked, so why is this button clickable a second time? Then, once the developer

has a possible fix, how can we determine whether this fix is correct?

It is common for teams developing software to test their programs by running on example inputs or

have dedicated engineers to use the software, looking for such problems. However, such testing is expensive

and cannot guarantee the software to be secure and free of crashes. Therefore, much research has gone into

program analysis techniques that explore the control flow of a program systematically and represent what

may happen at runtime. Abstract interpretation [29], model checking [28, 107], and Hoare logic [59] serve

as examples. These techniques work by compactly representing sets of program memories and behaviors.

The application may then be proven safe if these compact representations exclude defective states. Similar

program analysis techniques [60, 131, 74] use such compact representations to efficiently discover defects.

The relationship between these techniques is captured by Incorrectness Logic [93].

Despite the effectiveness of these program analysis techniques in representing vast spaces of program

behavior and identifying defects efficiently, significant challenges are encountered with event-driven appli-

cations. The stack trace in Figure 1.1 shows that a framework class called ButtonHandler is responsible

for invoking onClick. However, ButtonHandler is not included in the application or the development

environment used to build such applications. ButtonHandler is part of the complex underlying software

included with a cell phone. This class is only available after the application has been installed on the de-

vice. As a result, the developer of any program analysis technique needs to take an “educated guess” at how

control flow leads to onClick from prior callbacks. Therefore, the developer of a program analysis is faced

with the same dilemma as the application developer: under what conditions may a onClick callback be

invoked twice? We will generally refer to the possible callbacks and their order as callback control flow.

Figure 1.2 illustrates more detail about how the Android framework and the fixed version of Anten-

napod interact and why this problem is so challenging. The left-hand side represents the framework and is

currently displaying the ConfirmationDialog, asking if the user really wants to remove a podcast feed.

On the right-hand side is the Antennapod application, which defines a callback for the “OK” button and a

callback for the “Cancel” button using makeButton. These actions are represented by “Remove Action” and

“Dismiss Action” respectively. When the user presses the “OK” button, the framework invokes onClick
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associated with the Remove Action. The Remove Action first causes the task to be executed, then the dialog

is dismissed with finish, and the button is disabled with setEnabled. In the buggy version of the appli-

cation, a second onClick of the Remove Action occurs crashing the application. Intuitively, it seems like

finish should prevent the second onClick, but the framework does not behave that way. Unlike finish,

disabling the button with OK Button.setEnabled(false) actually prevents the crash.

Unfortunately, the documentation does not fully specify the behavior of our example and many

other behaviors. To make matters worse, there can be an unbounded number of actions, buttons and

other “entities” that affect the callbacks. In order to determine if this application is safe, we need to rea-

son about how the OK Button relates to the Remove Action to determine which action is prevented by

setEnabled(false). This interaction highlights the three key challenges of distinguishing a crash and

a fix: (1) How can we accurately represent callback control flow with a framework model? (2) How can

we distinguish bugs from correct application code using a framework model? That is, how can we per-

form a callback order aware, application-only analysis? (3) How can we make the process of constructing a

framework model easier and less error-prone?
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void onClick(){
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}

Remove Action 7→
void onClick(){

... start feed removal ...

... dismiss dialog ...
finish()
... (code fix) disable the button ...

okButton.setEnabled(false)

}

Can onClick happen again here?

Figure 1.2: A sketch showing how the Antennapod application interacts with the event-driven Android

framework. On the left-hand side, is the Android framework displaying the user interface confirming the

user’s intent to remove a podcast feed. The right-hand side represents a portion of the Antennapod applica-

tion that defines two callbacks for the “OK” and “Cancel” buttons. In the center, is the message history cap-

turing the interaction between the two. First, the application uses makeButton to display both the “OK” and

“Cancel” buttons. This action also associates the Remove Action with the “OK” button and Dismiss Action

with the “Cancel” button. When the user taps the “OK” button, the framework invokes the onClick with the

Remove Action. Which starts the removal of the feed and dismissing the dialog with finish. The crash occurs

if the user taps the button a second time, quickly invoking another onClick with the Remove Action. The

developer fixes this application by adding okButton.setEnabled(false) to disable the button. But how

do we know that this fix is correct? The behavior of finish and setEnabled are hidden in the framework

and the OK Button identifier used by setEnabled is not shared with the offending onClick.

The Difficulty of Representing the Callback Behavior of the Framework
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Primarily, modeling the framework is difficult simply because it is huge. The onClick callback

is just one of the more than 36,000 possible callbacks an Android application might utilize. There are

hundreds of thousands of methods like finish and setEnabled(false) that can affect callback order.

The framework is also continuously changing as new functionality is added. These changes mean that

maintaining a framework model is extremely difficult.

One approach to representing the callback behavior is to assume an arbitrary framework implemen-

tation. This design corresponds to analyzing each top-level callback (i.e., entry point into the app code)

as a separate program with an application-only call graph [1]. This approach effectively assumes that any

callback may happen at any time with any arguments. The advantage of this approach is that it is simple

and general (i.e., it can over-approximate any framework implementation by assuming all callbacks can be

invoke at any time and with any arguments) and thus is the approach generally used by industrial-scale ana-

lyzers for Android apps (e.g., [47, 79, 86, 38]). However, such techniques often result in false alarms, caused

by the analysis considering callback order that cannot happen at runtime. Such false alarms significantly

affect the utility of any program verifier when used for real software development [38].

In order to reduce callback order relating to false alarms, many program analysis techniques for An-

droid attempts to eagerly generate code that may be substituted for the framework. For example, the Activity

Lifecycle [4] and buttons are modeled by detecting relationships between objects in the call graph and XML

files using heuristics, then hard coding control flow [11, 18, 137]. This approach also has some significant

limitations. It is not feasible to maintain such heuristics for over 36,000 callbacks in the Android frame-

work. Such heuristics become especially hard when callback control flow involves relationships between

multiple identifiers, like the buttons and their corresponding actions (e.g. imagine if an action is connected

with multiple buttons). In practice, most analysis frameworks for Android do not accurately model the order

callbacks may occur [133]. Additionally, it is extremely easy to miss components resulting in unreachable

application code [25]. Both of these problems lead to unsound framework models that restricts the frame-

work behavior too much, resulting in false negatives (i.e. true bugs that are not reported). Chapter 3 dives

deeper into why such modeling approaches are problematic.

Ideally, one will have a completely sound and precise framework model that behaves exactly as the
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real framework. However, a completely precise model is impractical to build and difficult to analyze. There-

fore, the central challenge is to build a model that is precise enough to prove safety in applications while

being simple enough that the model is reasonable to build. An additional benefit to simpler models is that

they improve the performance of the program analysis.

The Difficulty of Callback Order Aware, Application-Only Analysis

Representing the callback control flow is the primary challenge when analyzing an application with-

out the framework implementation. Starting from a control flow graph, where all callbacks can happen at any

time, we need to only consider control flow paths that are realizable under the framework. From the message

history discussed earlier in Figure 1.2, it can be seen that restricting realizable message histories is at least as

hard as context free reachability [111]. For a given button, each onClick invocation must be paired with a

corresponding makeButton. In addition to the context free language of registering and receiving callbacks,

identifiers for buttons, listeners, and more must be represented by the program analysis.

The next challenge is that not all application memories are possible under every sequence of callbacks.

Since the application is designed to react to external events, the memory state will depend on what callbacks

have occurred. For example, the Antennapod application memory will capture the effects of Remove Action

upon the user pressing “OK”. Therefore, a program analysis needs to represent the state of the application

memory with respect to what events have happened (i.e. we need a relational abstract domain between

message histories and memory).

1.1 Thesis Statement

As hinted in the introduction with Figure 1.2, reasoning about the interaction between the application

and the framework is the key to precise analysis of event-driven applications. Both callback and call-in

invocations across this interface are referred to as messages, as they represent continuous communication

between the application and the framework. The set of possible messages from the framework across this in-

terface at any given time are determined by the message history. Message histories allow us to address our

two key challenges from earlier: (1) The behavior of the framework can be represented as a targeted frame-

work model, using the message history to determine when important callbacks may occur. For example, a
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model may state that if an onClick callback is invoked then the application must have shown the button

and registered a listener with makeButton and not be in the disabled state as indicated by setEnabled.

(2) Bugs may be distinguished from correct code by performing a message-history aware application-only

program analysis. This analysis represents the callback-control flow precisely and soundly capturing ap-

plication behavior. (3) The process of constructing framework models can be improved by first validating

models against observed behavior to avoid unsoundness, and second, by learning a sufficient model based

on the property to prove.

A framework model can be said to be targeted if it restricts only the framework behaviors that would

lead a program verifier to reach a false alarm. For example, the relationship between setEnabled(false)

to onClick is an important property to target. However, there are other callback order constraints that are

less likely to be useful when proving safety. For example, a Button may only be used after the parent

user interface has been created. Such a property is always true, but rarely contributes to a proof. Since

the callback that creates the user interface usually invokes makeButton, the extra behavior of a button

click happening earlier is excluded anyway. Similarly, there are a wide variety of other behaviors from

the framework that, if possible, would not cause a crash in the application. The key insight of targeted

modeling is that behaviors should only be restricted as needed. We find that applications typically only rely

on an extremely small number of the possible sound constraints that could be placed on an event-driven

framework.

For the second major challenge of analyzing event-driven applications precisely, this dissertation

addresses the problem of abstracting callback control flow using message histories. Similar to how other

program analysis compactly represents possible memory states of a program using a memory abstraction,

we present a method of abstracting the history of messages to determine when paths through the callbacks

are possible. This abstraction also relates the program memory reached under a given message history. The

unbounded alphabet of messages between the application and framework is a key challenge in precisely

representing a message history in a program analysis. These messages are unbounded due to the identifiers

for buttons listeners and other entities involved in the runtime execution of the application. We show how

to automatically determine properties of abstract message histories, such as emptiness or excludes initial.
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As will be shown in chapter 4 and chapter 5, this approach to precisely abstracting message histories for

verifying event-driven applications can distinguish defects and fixes that no other technique can address.

Due to the extremely large size of event-driven frameworks (over 36,000 possible callbacks in An-

droid alone), we argue that framework models should be automatically generated from runtime data and the

requirements of safety properties. This generation is a form of abductive reasoning since we are looking

for an explanation that fits the observed runtime behavior and is sufficiently strong to prove the code correct.

That is, any framework model that we prove safe should include behaviors reaching the crash in the buggy

version of the application. A key part of abducing any hypothesis from data is to keep the hypothesis simple.

Overly complex hypotheses can lead to over-fitting of the data. For this reason, targeting of the framework

models is essential. Of the 36,000+ callbacks, we find that the vast majority can be ignored while modeling

the framework. In fact, we find in our evaluation that most safety properties may be proven with around 3

callbacks restricted by the framework model (discussed in detail with section 4.4).

Therefore, this dissertation argues the following thesis statement:

Targeted representations of message histories are essential to automatically abduce framework be-

havior for distinguishing defects from correct code in event-driven applications.

1.2 Contributions and Organization of Dissertation

The rest of this dissertation is organized as follows: First, we present an overview in chapter 2, with

examples of each of the steps towards our goal of effective event-driven application analysis. Next, we

present our contributions as individual chapters:

(1) Chapter 3 presents a method of reasoning about framework models based on the interface between

the application and the framework. In this chapter, we examine whether it is possible to write frame-

work models that are precise enough to exclude behavior that is not possible under a framework

while soundly over-approximating real framework behavior. Since this work was performed before

it was clear how such framework models may be used for static analysis, we develop a technique of

predictive trace verification that explores if reordered events may reach a defect. In this chapter, we
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demonstrate that precise models may be written while maintaining a high level of soundness. We

evaluate the soundness of both our model and related models by recording the interactions between

the application and framework for 1679 executions of 126 distinct Android applications.

(2) Chapter 4 presents a method for analyzing an event-driven application in isolation from the frame-

work while abstracting message histories. We present this analysis by first defining an application-

only transition system giving semantics to an application under an arbitrary framework model that

may invoke any callback at any time. Next, we present a message-history program logic that ab-

stracts message histories backwards from a suspected defect in order to prove that the defect may

not be reached. This program logic is then extended with a domain specific framework model-

ing language called Callback Control Flow Temporal Logic (CBCFTL for short) that targets the

properties of interest for proving the absense of a defect. CBCFTL formula may be automatically

combined with abstract message histories and interpreted as SMT formula. We then implement

these techniques in a tool named Historia and evaluate the effectiveness on real-world open source

Android applications.

(3) Chapter 5 details a goal-directed approach to finding and proving that a message history reaches

a location or defect under a given framework model. This is useful for both the development

cycle, where a developer would like an explanation of the callbacks reaching a defect, and also for

validating framework models. The earlier mentioned approach to validating framework models of

recording message histories at runtime has significant drawbacks. Such instrumentation is invasive

and can only run on a local device missing the behavior of the 23,999 other devices that could run

the application. In contrast, a reachable location can be obtained from a variety of sources such as

a stack trace.

(4) Chapter 6 finally puts the pieces together and takes a location of interest and abduces a framework

model sufficiently strong to prove correctness, yet validates on a corpus of known reachable loca-

tions. The key to this approach is using the CBCFTL domain specific language to constrain the

hypothesis space of framework models. This hypothesis space may further be constrained by the
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observation that effects between messages are almost always connected (i.e. they share identifiers

for buttons, listeners, etc). With this connectedness observation, we may then efficiently search

the hypothesis space of framework models by following a specialized pointer analysis determining

which messages may alias each other’s arguments known as a message graph.



Chapter 2

Overview: Proving Properties Event-Driven Applications Using Message History

Abstractions

This dissertation uses the Antennapod defect and the corresponding fix because it is reasonably simple

and clearly depends on the order of the onClick callback. However, this defect illustrates many of the

challenges associated with event-driven frameworks including the need for sound framework models and

precise alias analysis. Our goal with this dissertation, is to be able to automatically distinguish between this

kind of multi-callback defect and their associated fixes.

This overview section first describes the defective code and the accepted fix. Then, since it is difficult

to talk about an analysis without being able to represent concrete executions of an application, we intro-

duce a principled method of describing executions of the application and framework without relying on a

framework implementation in section 2.1. With this new view of executions in mind, section 2.2 presents a

domain specific language and technique for modeling the framework behavior precisely enough to be useful

while not excluding possible behaviors. Putting these two pieces together, section 2.3 shows how we may

prove properties in applications, such as the fix for the Antennapod crash using the framework model. With

such a program analysis, we find that models are still hard to write due to the size and difficult behavior

of event-driven frameworks such as Android. Therefore, section 2.4 shows how we may use the existence

of known bugs, such as this Antennapod crash, to ensure that the model does not prevent an analysis from

alarming on a potential defect involving similar callbacks. Finally, section 2.5 describes how we may use a

target location as well as known defects (or other reachable locations), to automatically generate framework

models using framework model synthesis.
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As discussed in the introduction, an application is implemented as a set of callbacks that respond to

external events. Figure 2.1 shows a simplified version of the code that caused the crash shown in Figure 1.1.

Line 17 (highlighted in green) was added later to fix the crash. There are 3 callbacks, an onCreate, in-

voked when the dialog is started, and two onClick callbacks, corresponding to the removal action when

the “OK” button is pressed and a dismiss action corresponding to when the “Cancel” button is pressed.

The RemoverActivity is an object use to represent the state and user interface of the dialog shown in Fig-

ure 1.2. By extending the framework object Activity, the RemoverActivity can define callbacks, such as

onCreate, and access callins for manipulating the user interface (e.g. makeButton for adding buttons and

finish for dismissing the window). We will first describe the normal execution of the buggy application

and then describe the crash and fixed application.
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1 class RemoverActivity extends Activity implements OnClickListener{

2 Button okButton;

3 Button cancelButton;

4 FeedRemover remover;

5 void onCreate(){

6 // Set up the OK and Cancel Buttons

7 this.okButton = this.makeButton(this);

8 this.cancelButton = this.makeButton(new DismissAction());

9 // Create the object encapsulating the removal task

10 this.remover = new FeedRemover();

11 }

12 void onClick(){ //Remove Action

13 // Start the asynchronous removal of the podcast feed

14 this.remover.execute();△!

15 // Dismiss the dialog window

16 this.finish();

17 this.okButton.setEnabled(false);

18 }

19 class DismissAction extends OnClickListener{

20 void onClick(){

21 RemoverActivity.this.finish();

22 }};

23 }

Figure 2.1: An example defect and fix in the Antennapod application, where a background task may be

started twice by the execute method. This results in a crash on Line 14. Each method in red is a callback

(i.e. onClick and onCreate) that responds to external events. The error occurs because, counterintuitively,

finish does not prevent a future call to onClick, allowing two onClick callbacks to occur. The fix

that was accepted disables the button using setEnabled(false), shown on Line 17. This example is

challenging for program analysis because of the need to model the behavior of the setEnabled(false)

method and the need of precise aliasing analysis.
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Normal Application Execution

During execution of the application, the onCreate callback is invoked when the dialog is about

to be shown. This callback creates an instance of the FeedRemover on Line 10, which encapsulates a

background task to remove the podcast feed. When the application calls methods defined by the frame-

work, we refer to them as callins to mirror the term callback since they are calling into the framework.

The complex process of setting up a button, is merged into the makeButton callin (in the real framework

this is multiple steps including allocation with new Button() and registering a listener with the callin

setOnClickListener). The return value of makeButton is a reference to the button itself, that can be use

for actions like disabling the button with setEnabled(false). References to these buttons are stored in

fields on the RemoverActivity class. There are two arguments to makeButton, the first is the Activity,

representing the portion of the user interface displaying the button, and the second is the listener. A lis-

tener is a class with a callback that is invoked when an action occurs. For the buttons, there are two listeners,

RemoverActivity and DismissAction. Such listeners are lambdas in the real code, but we have extracted

the DismissAction into a named class for clarity of presentation. Additionally, the “Remove Action” has

been merged with the RemoverActivity to simplify the explanation of proving the fix. These changes are

simply for presentation purposes, the techniques we present work on the original versions as well.

When the user of the application clicks the “OK” button, the framework invokes the onClick callback

on the instance of RemoverActivity which was registered as a listener on Line 7. By choosing the receiver

of the onClick callback, the framework is indicating to the application whether “OK” or “Cancel” was

just pressed. For this application (and most Android applications in general), dynamic dispatch is used to

select the correct callback corresponding to an action. In this case, the onClick on Line 12 is invoked.

Next, the invocation of execute starts the process of asynchronously removing the podcast feed using the

FeedRemover created earlier. Finally, the dialog’s Activity is removed from the screen by calling the

finish method.

As a rule, callbacks should always finish quickly to maintain user interface responsiveness. Removal

of a podcast feed involves reading and writing to the system storage. This may take long enough to cause

the user interface to appear “frozen” or unresponsive. Therefore, tasks that may run for longer than a few
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milliseconds should be done with such background tasks. We elide the specific code responsible for this

background task since it is not relevant to the crash, but it has a separate callback doInBackground that

is executed on a worker thread. This style of background task throws an error if executed twice to avoid

race conditions (i.e. it is a linear resource that is “consumed” when execute is invoked). Similar to the

“OK” button, the “Cancel” button invokes the OnClickListener passed to the earlier call to makeButton.

However, in the case of the “Cancel” button it just dismisses the dialog.

Crashing Execution

Figure 2.2 shows how interactions between user interface (UI), event loop, framework interface, and

app interact at runtime cause this crash. From the perspective of the user, the crash may manifest if the

“OK” button is tapped twice in quick succession. These taps are handled by the UI component within the

framework and eventually cause the framework interface component to invoke the onClick callback twice,

causing the crash. To fully understand this defect, it is necessary to explain how the UI communicates to the

other components using the event loop and framework interface.

The event loop component is key to understanding the crash. Event loops are used by nearly ever

event-driven framework in order to simplify concurrency. In our example, the event loop ensures that all

three callbacks are executed sequentially, regardless of when external events occur. For example, it is not

possible for the onClick callback to occur while the onCreate callback is being invoked. Such sequential

execution has the advantage that the developer does not need to consider interleaving of callbacks. Without

an event loop, overlap of onClick and onCreate could result in a null pointer exception, if execute

is called before the task is allocated. With an event loop, the onClick and onCreate callbacks appear

to happen atomically simplifying development. However, the event loop can also complicate application

behavior as we will see with this crash.

Figure 2.2 shows how the user interface and application interacts with the event loop to cause this

crash. Both the user interface and event loop are part of the Android framework which interacts with the

application through the framework interface. Messages within the framework are represented with arrows

and labeled with human-readable descriptions. The earlier messages in the execution are at the top of the

diagram, with time increasing as they go down. Messages between the framework interface and application
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consist of the method name and arguments as well as creation of new objects (this is the message history

during execution of the application). Arguments are represented by italics letters (with subscripts for buttons

and listeners). Callback invocations are labeled with cb. Callin invocations are labeled with ci. For example,

the message bok = ci a.makeButton(a) indicates that the application called the makeButton method on the

framework with the receiver a for the RemoverActivity where the button is displayed and the second

argument is the listener object which is again the RemoverActivity (alternatively, the listener object is

ldisfor the “Cancel” button).

First, the user interface indicates that the dialog is about to be shown, by queueing an event to create

the RemoverActivity. When this event is processed, the onCreate callback is invoked on an instance

a, setting up the buttons (bok and bcancel), click listeners (a and ldis), and background task (t), the same as

normal operation. After invocation, the creation event is removed from the queue (shown by striking out

the “Create a” in the queue) and the dialog is shown to the user. When the user taps the “OK” button, the

user interface enqueues a “Click lrm” event. As the first click event is being processed, the second user click

occurs, adding another “Click lrm” event to the queue. The call to finish enqueues an event to dismiss

the dialog. But, the second click happens before the finish can take effect. As a result, of the second

invocation of onClick, the callin execute is invoked a second time on the background task t.
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UI Event Loop Framework Interface App

Enqueue Create RemoverActivity

Event: Create a

cb a.onCreate()

bok=ci a.makeButton(a)

Show OK button

bcancel=ci a.makeButton(ldis)

Show Cancel button

Create aqueue:

Create aqueue:

Message History

Enqueue OK Click

Event:Click a

cb a.onClick()

ci t.execute()

Enqueue OK Click

ci a.finish()

Enqueue finishClick aqueue:

Click aFinish aqueue:

Click aqueue:

Click aqueue:

Event: Click a

cb a.onClick()

ciexn t.execute()

Framework

Figure 2.2: The sequence of execution causing the crash. We show three parts of the execution: the user

interface (UI) which draws the buttons and dialog, the event loop which queues and executes events, and the

application (App). The second click causing the error is possible because the “Finish” event is still in the

queue and has not affected the “Click” event. In the fixed version, setEnabled(false) actively removes

the corresponding “Click” events from the queue.

Fixing the Application

The accepted fix for this defect is to call setEnabled(false) (Line 17 of Figure 2.1) on the button

to prevent a future onClick with the RemoverActivity as a receiver. Distinctly different from the behavior

of the finish callin, setEnabled(false) will actually remove pending Click events from the queue.



19

This fix highlights two key challenges when understanding such a fix or attempting to automate proof

that such a fix is safe in a program analysis. The first challenge is precisely reasoning about aliasing and

relationship between objects: Since there is an arbitrary number of buttons and other UI objects, any model

of the framework behavior needs to distinguish that only the click listeners associated with the disabled but-

ton can no longer happen. Specifically, in our example, disabling the “Cancel” button will not fix this issue.

The second major challenge is that finish and setEnabled are just two of the hundreds of thousands of

methods that an Android application may invoke. How can we hope to precisely understand the interactions

among the tens of thousands of callbacks, hundreds of thousands of callins, and the event loop?

2.1 Describing Callback Control-Flow of an Application Without the Framework

The first contribution of this dissertation is a general method of representing concrete executions in

an event-driven application, independent of the framework and event loop (described fully in chapter 3).

Modeling and analyzing the queue, shown in Figure 2.2, would be extremely difficult. Various components

of the framework may add, remove, or rearrange the events on the queue during normal execution. We call

this concrete semantics LambdaLife. LambdaLife should be general enough to describe the execution of any

application. For example, we do not want to “hard code” the relationship between the syntactic onClick

methods, with the syntactic call site for setEnabled. Such hard coded solutions would require manual

effort to analyze each new application. LambdaLife is the basis for the later contributions around modeling

and analyzing event-driven applications.

Central to our approach is capturing the essential, hidden framework state—tracking the set of en-

abled callbacks and the set of disallowed callins. Figure 2.3 illustrates this model state along a trace from

the fixed app. At the beginning of the execution, the cb a.onCreate callback is enabled, indicating that

the framework may create the RemoverActivity at some point. Such callbacks may be thought of as sus-

pended computations or “thunks”, that may be executed non-deterministically at some point. Every time a

callback is invoked or the application invokes a method on the framework, the model executes code that up-

dates the enabled set. For the cb a.onCreate() callback, this code looks like “disable this.onCreate()”.

Next, the application creates the buttons and registers the listeners with makeButton, creating a new thunk
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representing the button, indicated by adding cb a.onClick() to the enabled set.

Next, LambdaLife models the framework execution, by non-deterministically choosing an enabled

callback. We show the system choosing cb a.onClick(), but an equally valid execution could have been to

choose cb ldis.onClick(). Since buttons can be clicked an arbitrary number of times, we can think of the

onClick thunk as re-enabling itself when executed. As a dual to the enabled set, we can think of execute

disallowing itself by adding ciexn t.execute() to the disallowed set. If a method in the disallowed set is

invoked, then the defect occurs.

A key difference with traditional thunks is that the thunks may be “disabled” before they execute,

setEnabled(false) disable the cb a.onClick() thunk. To soundly model the framework, finish cannot

disable the button.
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Interface App

cb a.onCreate()pre enabled/allowed: cb a.onCreate()

post enabled/allowed: cb a.onCreate() d

Create Message

bok=ci a.makeButton(a)pre enabled/allowed: ∅

post enabled/allowed: cb a.onClick()
d

Make Button Message

bcancel=ci a.makeButton(ldis)pre enabled/allowed: cb a.onClick()

post enabled/allowed: cb a.onClick(), cb ldis.onClick()

dClick Message

cb a.onClick()pre enabled/allowed: cb a.onClick(), cb ldis.onClick()

post enabled/allowed: cb a.onClick(), cb ldis.onClick()

d
Click Message

ci t.execute()pre enabled/allowed: cb a.onClick(), cb ldis.onClick()

post enabled/allowed: cb a.onClick(), cb ldis.onClick(),
ciexn t.execute()

d

Execute Message

ci a.finish()pre enabled/allowed: cb a.onClick(), cb ldis.onClick(),
ciexn t.execute()

post enabled/allowed: cb a.onClick(), cb ldis.onClick(),
ciexn t.execute()

d
Finish Message

ci bok.setEnabled(false)pre enabled/allowed: cb a.onClick(), cb ldis.onClick(),
ciexn t.execute()

post enabled/allowed: cb a.onClick(), cb ldis.onClick(),
ciexn t.execute()

d
Set Enabled Message

The Click is not enabled, so

it cannot happen here.

Figure 2.3: The key to modeling the framework is capturing the enabledness of each message paired with

the corresponding identifiers. On the left-hand side of the figure, we list the set of enabled callbacks or

the callbacks that may be non-deterministically selected to happen next. Each time a message occurs, our

execution model updates the enabled and allowed set accordingly. Messages that were just disabled are

indicated by being crossed out (e.g. cb a.onCreate() self-disables as indicated by cb a.onCreate() in

the enabled set). Importantly, for the correct functioning of the fix, ci bok.setEnabled(false) disables

cb a.onClick(). By reasoning about the enabled and allowed sets, we simplify the complex process of

heap updates, native code, and more that manage the event loop.
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The key observation is that the safety of the application does not depend on whether a button is

displayed and not yet clicked or if the button has been clicked but is still in the queue, just whether the

onClick callback may happen. Similarly, the initial state where the button has not been shown yet is

the same as the state right after a setEnabled(false), an onClick simply cannot happen. We refer to

message histories that may be observed in a running application as realizable message histories. But how

can we compactly represent realizable message histories without writing the code that enables callbacks?

2.2 Manually Modeling Event-Driven Protocols and Callback Control Flow

With the concrete transition system for an application, the next step is to be able to write down the

behavior of the framework that determines the enabled set with a framework modeling language. A common

starting point for a framework model is the documented Activity lifecycle [4, 105]. In Figure 2.4, we

show a lifecycle automaton for the Activity class of the Android framework. The black, solid edges

are the edges present in the Android documentation showing common callback control flow. However,

the activity lifecycle alone is often too imprecise for program verification tasks. Therefore, many analysis

techniques [11, 84, 17] will augment the lifecycle by iteratively finding other callbacks and attaching them

to the lifecycle, such as onClick connected with the short dashed blue lines (for convenience we will refer

to this as lifecycle++ later). Unfortunately, due to the dynamic nature of UI construction, it is extremely

difficult to construct such a model that can precisely distinguish the bug and fix in our example.
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a.onCreate() a.onStart() a.onResume()

l.onClick(b)

a.onPause() a.onStop() a.onDestroy()

a.onRestart()

Figure 2.4: A common approach to modeling the Android framework is to use an automata of callbacks.

Above, we show the Activity lifecycle automaton from the Android documentation [4] (solid black lines)

augmented with the button onClick (short dashed blue lines). Unfortunately, such models are not precise

enough to prove the fixed version of our example safe. Worse yet, the finish method can cause a variety

of unexpected callback ordering including the edges shown as long dashed red lines.

In order to distinguish the bug and fixed version of our motivating example, we need a better frame-

work modeling language. Such a framework modeling language should be designed to minimize the most

common problems associated with framework modeling in general: (1) The Framework Model May be

Unsound: a framework model can disable a callback when that callback is possible when running the ap-

plication. As a result, existing defects, such as the buggy version of our example, may be hidden. (2) The

Framework Model May be Imprecise: on the other hand, a framework model may enable a callback that

cannot happen at runtime, which may result in not being able to prove that a correct application avoids a

crash. (3) The Framework Model Can be Undecidable: later we introduce tools to automatically reason

about these framework models. If the modeling language is too complex, then these tools will not per-

form well (both in runtime and distinguishability). To balance the needs of soundness, precision, and the

need for decidability, we introduce the domain specific language Callback Control Flow Temporal Logic

(CBCFTL).

CBCFTL is designed to determine the enabled set of callbacks and the allowed set of callins based

on the message history. In this way, the model can relate the messages that enable or disable a callback to

whether the callback can occur. Considering the onClick callback in both Figure 2.3 and Figure 2.2, we can

see that the conditions for an onClick invocation are the same, regardless of the application implementation.

These conditions are: (1) The button must be created and attached to a parent Activity. In our application

this is done with the makeButton method, that takes the RemoverActivity (a subclass of Activity).
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(2) A listener object sub-classing OnClickListener must be registered (e.g. with the first argument of

makeButton). (3) The button must be enabled. That is, either setEnabled(false) has never been called

or setEnabled(true) has been called more recently. We can model the behavior of the onClick callback

by capturing these conditions.

It can be seen that messages leading to an enabled onClick callback fall into two broad categories:

messages that affect whether onClick can happen at some point in the future and messages that have

no effect on onClick. For example, calling setEnabled(false) has a very meaningful impact on the

onClick callback. The vast majority of callbacks and callins have no effect. Invoking the execute method

does not directly change the state of the framework, such that an onClick callback may be enabled or

disabled. Therefore, CBCFTL is designed to capture the behavior of a small set of callbacks and callins at a

time while leaving the majority of callbacks and callins unrestricted.

For this reason, CBCFTL captures one callback (or callin return) at a time and specifies the history

under which it can happen using a fragment of past-time temporal logic [80]. We use the term back message

to refer to callbacks and the return from callins as both may be captured in CBCFTL. A framework model

in CBCFTL is a conjunction of history implications which each targets a single back message. A history

implication capturing the creation and enabledness for a button’s onClick listener is shown by History

Implication 1. Full details of CBCFTL may be found in section 4.2.

History Implication 1. (Sound onClick) For all listener objects l, if an onClick occurs, then it must be

historically true that there exists an Activity a and Button b, such that Once (O ) in the past makeButton

was invoked and setEnabled(false) has Not been invoked Since ( NS ) setEnabled(false) or

setEnabled(false) Has Not (HN ) been invoked.

cb l.onClick()� O b = ci a.makeButton(l) ∧

(HN ci b.setEnable(false) ∨ ci b.setEnable(false) NS ci b.setEnable(true))

History Implication 1 is not specialized to the “OK” button or even this application. To illustrate why,

consider the onClick defined by the DismissAction. In one case, the listener object is the same as the

Activity representing the dialog, and in the other case, the listener object is an inner class. A framework
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modeling language needs to capture corner cases where such objects may or may not be aliased. Similarly, it

is possible to register one click listener object to multiple buttons. For other components of the framework,

it is even possible to register multiple listeners to the same event. All of these behaviors need to be possible

to express in a framework modeling language.

Similar to the enabled set of callbacks, the return values of callins may be captured with the disallowed

set. We call this a disallowed set because it is typically used to capture errors or return values that may

cause errors (however, it may also capture arbitrary return values as well). History Implication 2 shows

how the property that execute can only be invoked once may be written with CBCFTL. This shows that

CBCFTL is versatile enough to capture typestate-like properties [127], as well as capture more complex

safety properties with multiple interacting objects [91]. However, CBCFTL extends existing typestate work

by allowing properties related to callbacks to be captured as well (e.g. we could specify that isDestroyed

returns true only if Once in the past, the onDestroy callback was invoked).

History Implication 2. (Disallow execute) For all AsyncTask objects t, if execute emits an exception,

then Once (O ) in the past, execute was invoked on t.

ciexn t.execute()� O ci t.execute()

The operator� is used for history implication where the left-hand side is the target message with

free variables (noted by m̂) and the right-hand side is the condition under which the message may occur

(referred to as a temporal formula and noted by ω̃). The m̂ � ω̃ history implication can be seen as the

first-order, past-time linear temporal logic formula □(m̂ → Y ω̃) that combines always (or globally) □,

implication→, and yesterday (or previous) Y from past-time linear temporal logic (ptLTL).

On the right hand side of the � operator, we have temporal formula capturing sets of message

histories under which the target back message may occur. A temporal formula is a restricted past LTL

formula consisting of temporal operators, conjunction, and disjunction. History Implication 1 shows each

of these temporal operators: (1) Once (O m̂) corresponds to a message required for the target to occur. For

example, there must have been a makeButton to see an onClick callback. (2) Has Not (HN m̂) corresponds

to a message that disables a target back message. For example, setEnabled(false) prevents the onClick
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callback. (3) Finally, Not Since (m̂1 NS m̂2) corresponds to a toggling behavior where m̂1 has not happened

since m̂2. For example, if setEnabled(true) has happened more recently than setEnabled(false),

then an onClick may occur if the other requirements are also met. Despite the apparent simplicity of these

operators, this dissertation shows experimental evidence in chapter 4 and chapter 5 that they can capture a

wide variety of event-driven components.

The “Next” temporal operator has been intentionally excluded from this language (or any other op-

erator that would broadly affect messages not named in the formula). This is an intentional design choice

based on the observation that most messages do not affect each other. From the perspective of design-

ing framework modeling language well, we argue that the framework modeling language should clearly

state how one named message affects another. A formula stating something like “after an onCreate, next

there is an onClick”, unsoundly prevents the occurrence of unrelated callbacks between the two (e.g. if

the user dismisses the application causing an onDestroy callback). There are a wide variety of possible

representations that could have been used to capture sequences of messages (e.g. automata, context free

grammars, etc). However, such representations can easily restrict unrelated messages by saying something

like “onClick must come next”. This design philosophy reduces much of the unintentional unsoundness

of framework models written in CBCFTL without significantly hindering the precision (as demonstrated by

the experimental evaluation in section 4.4). However, unsound models may still be written so how can we

build confidence that a model is correct?

2.2.1 Validation of Framework Models to test Soundness

Given the size and complexity of event driven frameworks, such as Android, it is important to be able

to build confidence that a framework model is correct. Unfortunately, when writing a framework model, it

is just as easy to make the same mistakes that a developer may make when determining how a given method

behaves. For example, History Implication 3 corresponds to the earlier unsound assumption that calling

the finish method can prevent a subsequent call to onClick. Similar to an application developer, the

developer of a framework model may not have sufficient documentation to accurately model the behavior of

an event-driven framework.
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History Implication 3. (Unsound onClick) For all listener objects l, if an onClick occurs, then it must be

historically true that there exists an Activity a and Button b such that Once (O ) in the past, makeButton

was invoked on a returning b and, additionally, finish Has Not (HN ) been invoked on a.

ci l.onClick()�O b = ci a.makeButton(l) ∧ HN ci a.finish()

However, the structure of these framework models means that message histories from any arbitrary ap-

plication must be consistent. Therefore, if a message history is observed at runtime that shows the onClick

callback after a finish callin, then the model can be observed to be unsound. For example, if we observe a

message history of the form Figure 2.5 in an arbitrary running application, then History Implication 3 cannot

be sound.

Interface App

b = ci a.makeButton(l)
. . .

ci a.finish()
. . .

cb l.onClick()
. . .

Figure 2.5: Any message history from any application that contains these three messages in this order shows

History Implication 3 to be unsound. This could be from the message history observed in the crashing

execution shown earlier (Figure 2.2), or it may be from a completely unrelated application.

In section 3.4 we perform this validation on the framework model for the most well-maintained open-

source Android program analysis that models callback order, Flowdroid [11]. We find that this model is

very unsound when it comes to precisely capturing callback order. Whereas this model has proven extremely

useful for the purposes of taint analysis, it cannot be used to distinguish defects like our motivating example.

Additionally, we show how useful models may be written while still validating on 1679 recorded message
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histories.

2.3 Refuting Callback Reachability with Message-History Logics

The next step is to explain the basis behind application only static analysis that uses these framework

models to define realizable message histories. In Figure 2.6, we illustrate an application-only transition

system, which consists of app transitions from the app code augmented with boundary transitions to a

single, distinguished framework location Fwk. Complementing section 2.1 which describes the behavior of

the framework, the application-only transition system describes the behavior of the application. Our key

insight is to internalize the concept of realizable message histories into the static analysis abstraction when

analyzing this application-only transition system. This internalization of realizable message histories into

the abstract domain enables decoupling the specification of possible callback control flow from the abstract

interpretation to compute an inductive program invariant. Such an approach is in contrast with the ones

that eagerly augment the interprocedural control flow graph with framework-specific control flow. At a high

level, our approach shares some conceptual similarity with context-free language (CFL) reachability-based

analysis [111] in reasoning about realizability in the analysis but for imposing callback control flow instead

of call-return semantics.

To describe our static analysis, we define Message-History Program Logic (MHPL), a program logic

with an ordered linear implication for capturing assumptions about future messages. Then, to automate

reasoning about the realizability of message histories, we define an algorithm for instantiating CBCFTL

specifications with MHPL assertions — combining the inferred assumptions from a backwards-from-error

static analysis and specified callback-control–flow constraints. In the rest of this section, we demonstrate

our technique by walking through the verification of the bug-fix from Figure 2.1.

2.3.1 An Application-Only Transition System to Define Executions Restricted by Message Histo-

ries

As discussed in the introduction, event-driven applications typically come as partial programs missing

code that invokes the callbacks. This code is often also missing the implementation for callins. The goal of
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this section is to show how such a partial program is converted into a form that a program verifier can use.

This application-only transition system is inspired by the work on application-only call graphs [1, 2] which

present a reasonable set of assumptions about the operation of frameworks in order to build call graphs while

not involving the complexity of the framework.

What makes the application-only transition system unique is that the code of the application is pre-

served in a way that enables program analysis that cares about the order of commands (i.e. flow-sensitive

program analysis). Conceptually, the application only transition system is a control flow graph of the ap-

plication where all nodes in the framework have been merged into a single Fwknode. The entry and exit of

callbacks and callins are augmented with boundary transitions that append to the message history. Boundary

transitions represent places where the framework makes non-deterministic choices of callback invocations

as well as return values of the callin invocations (formalized in subsection 4.1.1).
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Fwk

Create Remover Activity
cb this.onCreate()

this.OKButton = ci this.makeButton(this)

tmp = new DismissAction(this)

this.cancelButton = ci this.makeButton(tmp)

this.remover = new FeedRemover

Remove Action
cb this.onClick()

ℓ14 ci this.remover.execute()△!

ci this.finish()

ci this.okButton.setEnabled(false)

Dismiss Action
cb this.onClick()

ci RemoverActivity.this.finish()

Figure 2.6: An application-only transition system constructed from our motivating example. Each call-

back is connected to a central framework location and boundary transitions are added at the invocation of

callbacks and callins as well as their returns.

As these transitions occur, they have the effect of writing their message to the message history ghost

state discussed earlier. The application-only transition system has the benefit of being a sound framework

model by default (i.e., without further specification, is the most-over-approximate framework model). Each

boundary transition is assumed to be possible until explicitly disabled by the framework model. The next

challenge is to perform a static analysis that can utilize the CBCFTL framework model and the application

only transition system to prove safety.

2.3.2 Message History Program Logic (MHPL) Enables Static Reasoning about Message Histories

Program analyses often compute invariants for each location in the program. MHPL specifically

computes the invariant that over-approximates all states that may reach the assertion failure. This technique
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was inspired by goal-directed analysis [17, 16] which proves safety if all control flow paths that might reach

the failure are contradictory (i.e. no concrete states can exist at a location that reaches the failure). However,

unlike goal-directed analysis, event-driven programs rarely derive a direct contradiction. Instead, if the

invariant excludes the initial state of the program (e.g., the empty message history), then there is no way the

assertion failure can be reached from the initial state, and our program logic has proven that the assertion

failure is impossible. Here, we demonstrate such a proof on our running example.

While analyzing the application, MHPL maintains an invariant map, mapping each program location

to its current invariant (represented as Σ̂ in subsection 4.1.2). Individual locations in the application are

labeled with line numbers, and the framework location representing the event loop is labeled with Fwk. We

show a representation of this invariant map for our example in Figure 2.8. In a goal-directed, backwards-

from-error formulation, the invariant map initializes with the abstract state {ciexn t.execute() ↠ okhist ·

this 7→ a ∗ a.remover 7→ t} which is positioned right before the assertion failure. There are two parts

of the abstract state (which we separate with a center dot ·). On the right, there is an abstraction of the

heap or store of the app for the assertion failure; in particular, it says that the this variable points to some

object a and, separately, a has a field remover that points to a task t. We use intuitionistic separation

logic [64, 112] to describe the relevant heap or store, but our approach is parameterized by essentially

whatever logic one wishes to use to reason about the app state. The left component is more interesting — it

is our abstraction of the possible message histories to reach this location (ω̂ defined in subsection 4.1.2). In

particular, any execution that witnesses this assertion failure must have done so with a realizable message

history, written okhist. Intuitively, okhist denotes the set of all realizable message histories as dictated by

the framework. Note that okhist is not “top” or “true”, which would concretize to all message histories —

realizable or unrealizable. The full starting abstract message history, ciexn t.execute()↠ okhist, indicates

the realizable message histories such that execute is dissallowed and is invoked next.
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Fwk4 {cb a2.onCreate()↠ b4 = ci a2.makeButton(a2)↠ b3 = ci a2.makeButton(l2)↠

cb a.onCreate()↠ b1 = ci a.makeButton(a)↠ b2 = ci a.makeButton(l1)↠

cb a.onClick()↠ ci t.execute↠ b1.setEnabled(false)↠

cb a.onClick()↠ ciexn t.execute()↠ okhist}

cb this.onCreate(); . . .

Fwk3 {cb a.onCreate()↠ b1 = ci a.makeButton(a)↠ b2 = ci a.makeButton(l1)↠

cb a.onClick()↠ ci t.execute↠ b1.setEnabled(false)↠

cb a.onClick()↠ ciexn t.execute()↠ okhist}

cb this.onCreate(); . . .

Fwk2 {cb a.onClick()↠ci t.execute↠ b1.setEnabled(false)↠

cb a.onClick()↠ ciexn t.execute()↠ okhist · a.okButton 7→ b1 ∗ a.remover 7→ t}

cb this.onClick(); ci remover.execute();
ci this.finish(); ci okButton.setEnable(false)

Fwk1 { cb a.onClick()↠ ciexn t.execute()↠ okhist · a.remover 7→ t}

cb this.onClick()

ℓ14 {ciexn t.execute()↠ okhist · this 7→ a ∗ a.remover 7→ t}

ci remover.execute()

⊢

Figure 2.7: An inductive invariant for the fixed app consisting of abstract message histories and abstract

app states at each location in the application-only transition system (Figure 2.6) that may reach the assertion

failure. For brevity, this figure excludes less interesting transitions such as the case where the failing call

invocation is preceded by another invocation of call. However, all transitions are considered by the verifier.

The abstract message histories only show messages from the user provided specification for clarity. Note,

there is only one framework location and that we use the subscripts (e.g., Fwk1, Fwk2) to indicate disjunc-

tive elements of the abstract state at the framework location. With the specification of realizable message

histories (section 2.2) combined with the abstract message histories (subsection 2.3.3), we can show that

this invariant has reached a fixed point and that it excludes the initial state proving the assertion safe.

Intuitively, ciexn t.execute() ↠ okhist denotes any message history to which ciexn t.execute()
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can be appended to obtain a realizable message history. Operationally, ciexn t.execute() ↠ okhist can

be thought of as the set obtained by starting with the set of realizable message histories okhist, removing

those that do not end with cb a.onClick(), and truncating the remaining ones to remove cb a.onClick()

from the end. Then, to capture the effect of invoking onClick, the abstract message history to updates

cb a.onClick() ↠ ciexn t.execute() ↠ okhist at the abstract message history labeled by Fwk1 in

Figure 2.8 (this abstract state also removes the this variable due to popping the stack).

Having computed an abstract state at a framework location (Fwk1 in Fig. 2.8), we can now check if

the abstract state excludes the initial state; if it does not, then we have not yet found a proof that the assertion

failure is unreachable. If the framework could invoke l.onClick() as the first callback, then l.onClick()

alone is a realizable message history (i.e., cb l.onClick() ∈ okhist). Consequently, cb a.onClick() ↠

ciexn t.execute() ↠ okhist is a set that contains an empty message history, hence it includes the initial

state, prompting an alarm.

However, in reality the framework cannot invoke l.onClick() as the first callback (i.e., cb l.onClick()

is not a realizable message history). Crucially, since the set of realizable message history okhist of the

framework is not available (i.e., it is defined in the framework implementation), MHPL can use separately-

provided specifications of realizable message histories. History Implication 1 requires cb l.onClick() to

be preceded by the invocation of b = ci a.makeButton(l) for the message history to be realizable (as well

as a prior execute on the same task t).

This transformation of the abstract state from ℓ14 to Fwk1 is done by an abstract pre-transformer,

which is applied repeatedly to all predecessor transitions of an updated state until reaching a fixed point.

Applying the pre-transformer on the onClick callback results in the abstract state Fwk2{cb a.onClick()↠

ci t.execute↠ b1.setEnabled(false)↠ cb a.onClick()↠ ciexn t.execute()↠ okhist

· a.okButton 7→ b1 ∗ a.remover 7→ t} denoting the message histories that end in the corresponding mes-

sages. Each new abstract state is added to the invariant at a location as a disjunctive clause (i.e., the Fwk

location has an invariant of the form {Fwk1{...} ∨ Fwk2{...} ∨ ...}). Continuing so on through the application-

only transition system (and using the necessary specifications) would yield an abstract state at Fwk4 with

two onCreate callbacks, two onClick callbacks with their associated callins interleaved.
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Note that this state includes the initial state raising an alarm, as it satisfies the constraint imposed by

History Implication 1. This execution corresponds to onCreate being invoked on the same

RemoverActivity twice creating two separate buttons. Subsequently, the makeButton callin registers the

listener on both buttons. Since setEnabled(false) only disables the most recent button stored in the field

okButton, this means there may still be a clickable button visible. To remove this alarm, we add History

Implication 7 restricting onCreate to only be invoked once.

History Implication 4. (onCreate only once) For all Activity objects a, if onCreate was invoked, then

onCreate Has Not (HN ) been invoked in the past on a.

cb a.onCreate()� O cb a.onCreate()

As messages are parameterized by symbolic variables, we consider an unbounded number of possible

message instances at each predecessor step. Even if one restricts to one possible message instance for each

callback method, considering all possible predecessor callbacks makes the proof search exponential in the

number of callbacks. Fortunately, we are able to join abstract states by merging disjunctions, and merging

is required to find a fixed point in most cases. Given a disjunction of abstract states, one disjunct may be

merged with another if the first disjunction implies, or entails, the one it is being merged with. By merging

new abstract states from backward transitions when possible, we can reach a fixed point on some paths being

explored. In Figure 2.8, for example, Fwk4 is merged with Fwk3 since the first onClick cannot be the same

instance of RemoverActivity due to History Implication 7. No further backward transitions need to be

explored from Fwk4 because they have been explored from Fwk3.

We automate MHPL in an open-source tool called Historia which computes the fixed point at the

framework location. Historia considers all backward transitions and shows that the resultant inductive in-

variant excludes the initial state (for the running example with the fix). In other words, it proves that no

realizable message history reaches the crashing execute in the fixed version of AntennaPod. For presenta-

tion, Figure 2.8 shows only a few of the transitions and abstract states computed for the running example.

As can be seen by this simplified example, reasoning about abstract message histories and CBCFTL can be

extremely complex, how can we automate reasoning about abstract message histories?
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2.3.3 Combining Abstract Message Histories and Framework Models for Automated Reasoning

Next, we consider how to interpret and automatically reason about the meaning of abstract message

histories. As shown previously, we need to check two things: whether an abstract state excludes the initial

state and whether one abstract state is contained in another (entailment). Efficient automation of checking

excludes initial and entailment is crucial to verifying real applications due to the large number of abstract

states for even small applications. Such efficiency is achieved by an encoding such that message histories

are representable in Extended Effectively Propositional (Extended EPR) logic [73, 96].

Consider the abstract state just before the onClick callback with the abstract message history tran-

sition, cb a.onClick() ↠ ciexn t.execute() ↠ okhist. This abstract message history means that the

next message must be cb a.onClick() and then, after that, ciexn t.execute(). Then, the abstract message

history matches any prefix of those two histories that is represented by the CBCFTL framework model.

First, excludes-initial needs to be proven (i.e., this abstract state does not contain the initial state), and then,

entailment checks if an abstract state may be merged with existing abstract states. Both of these steps rely

on a first-order logic encoding of abstract message histories that we explain here. We prove the resulting

first-order logic encoding to be decidable for the excludes-initial judgment and computable in practice for

the entailment judgment.

This encoding starts by combining the abstract state cb a.onClick() ↠ ciexn t.execute() ↠

okhist with History Implication 2 (execute error), History Implication 1 (onClick), and History Implica-

tion 7 (onCreate). The first step of combining abstract message histories with temporal formula is instan-

tiation (i.e., the instantiate-yes judgment in section 4.3). Intuitively, instantiation turns the “next” message

from the abstract state into requirements on the message history so far. For convenience, the output of

instantiation is represented by the same language of temporal formula as is used in the history implications.

First, we apply the effect of the execute history implication. We know that cb a.onClick() ↠

ciexn t.execute() ↠ okhist matches message histories with an erroring execute appended at the end.

Additionally, History Implication 2 says that if an error is emitted from execute, then once in the past

execute must have been called. We can combine these two and get message histories where two things
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must be true:

(1) Once in the past, execute must have been called, i.e. O ci t.execute()

(2) Appending cb a.onClick() to the message history is realizable, i.e. cb a.onClick()↠ okhist.

At this point, we need to consider two cases, the first where cb a.onClick() = O ci t.execute() in

which case we no longer need an execute once in the past. However, these are clearly not equal as they

are different methods so the requirement of O ci t.execute() remains. Alternatively, an abstract message

history of ci t.execute() ↠ ciexn t.execute() ↠ okhist would be equivalent to okhist. Encoding steps

where messages are trivially non-equal are extremely common since these specifications tend to talk about

small groups of interacting messages (as discussed in section 2.2). This non-equality helps significantly

with performance allowing the formulas representing abstract message histories to remain relatively small.

We can then apply the instantiation on the message cb a.onClick() and the onClick HistoryImpli-

cation 1 resulting in the following two requirements:

(1) okhist

(2) O ci t.execute() ∧ O b = ci a.makeButton(a) ∧

(HN ci b.setEnable(false) ∨ ci b.setEnable(false) NS ci b.setEnable(true))

For explanation purposes, we can simplify the second requirement since the application cannot emit

a setEnabled(true) (this is the case since ci b.setEnable(false) NS ci b.setEnable(true) implies

that once in the past ci bsetEnabled(true) was invoked). So the message histories must now have an

execute, a makeButton, and not have a setEnabled(false). That is, message histories must satisfy the

following temporal formula: O ci t.execute()∧O b = ci a.makeButton(a) ∧HN ci b.setEnable(false).

Intuitively, we can see that this temporal formula must exclude the initial state since an execute and

a makeButton must have come earlier. However, the verification process described in section 2.3 generates

numerous such formula requiring that excludes initial be automatic. For this reason, we convert such formula

to first order logic within the extended EPR logic fragment (discussed earlier).
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In brief, effectively propositional (EPR) is a first-order logic fragment where closed formulas con-

verted into prenex normal form have the quantifier prefix ∃∀ without any function symbols. Extended EPR

adds function symbols as long as the quantifier alternation graph does not contain cycles. The quantifier

alternation graph is a directed graph where the nodes are sorts and the edges are defined by functions (or

∀x.∃y. . . .) from the sort of the argument to the sort of the value.

The sub formula ciexn t.execute() may be encoded in extended EPR by representing a concrete

message history as functions from a totally ordered uninterpreted sort to messages as follows:

∃t ∈ Val, i ∈ [0, len],m ∈Msg.hist(i) = m ∧ msgname(m) = “ciexecute” ∧ msgargs(m, “receiver”) = t

In this encoding, the uninterpreted functions hist,msgname, and msgargs are used to represent the

concrete message history. Messages m ∈ Msg and values t ∈ Val are uninterpreted sorts. Indices are

represented using another uninterpreted sort but with axioms making a total order that defines the special

zero value as well as less than. Similarly, the other parts of the formula may be encoded (negating the

Has Not and converting to negation normal form). The full explanation of this encoding may be found in

subsection 4.2.2.

Once we have such a formula encoded for each part, excludes initial can be automatically determined

by checking the satisfiability of “[FOL encoding of CBCFTL and Abstract State]∧len = 0”. If this formula

is unsatisfiable, then the abstract state must exclude the initial, empty message history.

Entailment of Abstract States

The same first order logic encoding may be used to determine entailment of abstract states such as the

abstract states labeled Fwk4 and Fwk3. If the formula “[FOL encoding of CBCFTL and Abstract StateFwk4]

∧ ¬[FOL encoding of CBCFTL and Abstract StateFwk3]” is unsatisfiable then the abstract state Fwk3 en-

tirely contains abstract state Fwk4. While this negation does make the entailment check no longer in the

extended EPR fragment of logic, we find that it performs well in section 4.4 Such an encoding allows ab-

stract states to be eagerly merged during verification significantly improving performance. As hinted at

when we were discussing that most messages do not need to be instantiated or updated, the next section

answers the question “How can we improve both the performance and difficulty of writing models?”.
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2.3.4 Targeted Framework Modeling

We hinted earlier that most messages in the framework do not interact with one another. This fact

has enormous benefits for both the difficulty of writing models and the performance of analysis. An added

bonus of the design of CBCFTL and our application only analysis is that it is always sound to assume that

two messages do not interact with one another. As a result, the goal of framework modeling is not to capture

all behavior of the event-driven framework. Rather, the framework model only needs to restrict just barely

enough behavior to prove safety properties of interest. We call such a model a targeted model because it

targets the properties that the application relies on for safety.

Another requirement for an onClick callback indicating that a button has been clicked is that the

button appears on a visible window on the user interface. The CBCFTL History Implication 5 soundly

captures this requirement by saying “If there is an onClick then the parent Activity must have had the

onCreate method invoked”. However, since makeButton is also required for an onClick and almost

always appears in the onCreate, such a framework model is rarely useful for verifying safety properties.

History Implication 5. (Sound but Un-Targeted onClick) For all listener objects l, if an onClick callback

occurs, then there must exist an Activity object a, such that makeButton was invoked on a with the first

argument l and onCreate was invoked on a.

ci l.onClick()�O b = ci a.makeButton(l) ∧ O cb a.onCreate()

As we will find in section 4.4, most properties resulting from messages such as onClick and onCreate

do not actually affect the correctness of an application. This evaluation shows that in real applications, we

typically only need to write framework models that match 2 to 5% of the messages possible in realistic

Android applications leaving the rest abstract.

2.4 Discovery and Explanation of Event-Driven Defects with History-Aware Incorrect-

ness Logic

An interesting observation about our technique for proving properties in event-driven applications is

that it can be extremely precise. In fact, with some reasonable modifications, we can change the direction of
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the soundness and create a program analysis technique that finds and proves the message history reaching a

location or defect.

Such a technique still depends on the precision framework model but even that can end up being

useful. Here we give an overview of the techniques presented in chapter 5 to find and prove that a message

history reaches a location or defect.

The primary use for this history aware incorrectness logic is to validate framework models without

the need of recording message histories. Any sound framework model should represent a message history

reaching any point in a program that is reachable when running under the real framework. For example, the

unsound History Implication 3 can not allow the crash shown by Figure 1.1 to be reachable. This is because

the original buggy application would actually be correct if finish prevented future onClick callbacks.

However, simply witnessing the defect gives us a hint as to what properties of the framework can be relied

upon for safety.

While useful for validating framework models, recording message histories is extremely difficult as

the instrumentation tends to alter the behavior of applications simply by changing the timing of callbacks.

These timing alterations often result in not recording as much of the application behavior as would be needed

to fully validate models. Known reachable locations for validation may be obtained easily for applications in

a number of ways. For example, by observing a crash like the one in Figure 1.1, logging or print statements

in various locations, sampling profilers, or even locations known to not be dead code.

A secondary reason for a technique to find and prove that a message history reaches a defect is to find

and explain defects for developers. If the framework model is precise enough, then the technique presented

in this section will find a message history that must reach the defect under a given framework model.

2.4.1 Goal-directed Incorrectness Logic

Much of this section mirrors how we would prove a location safe as discussed with the Historia work

earlier. The key difference is that the invariant map now represents only states that must step to the error

location and cause the failure. In order to find and prove that a sequence of transitions reaches a particular

defect, we first start at the location highlighted by the stack trace in the buggy application Figure 1.1. The
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error condition is similar to the proof over the safe application from earlier since the crashing line is

unchanged. Then, we accumulate abstractions of states that must step to the error condition. If one of the

accumulated states is the initial state of the application, then we have found an execution history reaching

the defect.

Fwk3 {cb a.onCreate()↠ b1 = ci a.makeButton(a)↠ ldis = new↠ b2 = ci a.makeButton(l1)↠ t = new↠
cb a.onClick()↠ ci t.execute()↠ a.finish()↠
cb a.onClick()↠ ciexn t.execute()↠ okhist · irrelevant}

cb this.onCreate(); . . .

Fwk2 {cb a.onClick()↠ ci t.execute()↠ ci a.finish()
cb a.onClick()↠ ciexn t.execute()↠ okhist · a.okButton 7→ b1 ∗ a.remover 7→ t ∗ irrelevant}

cb this.onClick(); ci remover.execute(); ci this.finish()

Fwk1 { cb a.onClick()↠ ciexn t.execute()↠ okhist · a.remover 7→ t ∗ irrelevant}

cb this.onClick()

ℓ14 {ciexn t.execute()↠ okhist · this 7→ a ∗ a.remover 7→ t ∗ irrelevant}

ci remover.execute()

Figure 2.8: The invariant map used to prove that a message history reaches the defect in the buggy version

of our example. This invariant map largely follows the same pattern but now only represents concrete states

that must step to the error location. The main changes from the verification are that the new calls must be

precisely tracked. For example, with Historia heap cells could be soundly summarized (dropped from the

formula) which is not possible here. Upon reaching Fwk3 we have found an abstract state that must include

the initial state and represents a message history reaching the defect.

The error condition for our motivating example requires the outer field of some RemoverActivity

a to point to some FeedRemover t and the execution history to end in a call to t.execute(). Specifically,

we use the following as the error condition ℓ14{ciexn t.execute() ↠ okhist · this 7→ a ∗ a.remover 7→

t ∗ irrelevant}. For the memory, this 7→ a ∗ a.remover 7→ t represents the this variable pointing to a and
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the outer field pointing to the task t. Standard separating conjunction ∗ combines such memory locations

with disjoint domains. We use the keyword irrelevant to represent the portion of memory that cannot be read

along the path to the crash. This memory could have any value and the crash would still occur. Appending

ciexn t.execute() with the symbol ↠ to okhist yields a constraint that must be read as following: “the

history resulting from appending an exception from the execute callin to a realizable history must also be

realizable”. In general, this is not true as, given any realizable execution history (i.e., a legal trace) of the

application in which a FeedRemover object t is created, appending a call to t.execute() at the end is not

guaranteed to generate an exception. For the exception to manifest, there must have been an earlier call to

t.execute(), i.e., the history should already contain a ci r.execute() event. Similar to the verifier, we can

use History Implication 2 to interpret the meaning as “Once in the past, execute must have been invoked

on t”. Given such a specification, the aim of the analysis is to build a witness execution that satisfies the

specification and ends in a crash.

Starting with the error condition ℓ14{ciexn t.execute() ↠ okhist · this 7→ a ∗ a.remover 7→

t∗ irrelevant} before Line 14, we accumulate states that must step to the error condition in an invariant map.

The invariant map is a mapping from program locations (before or after application lines or the framework

location) to abstract states and abstract temporal orders. Further steps will continue to pick abstract states

in the invariant map and update based on the command that comes just before. Multiple abstract states may

exist at a single location and simply represent that a state matching any single one steps to the error from that

location. In this way, we ensure that only states that must be able to reach the defect are added, maintaining

the spirit of incorrectness logic.

Within the application only transition system, some transitions like the entry into callbacks depend

on the overall order of execution and are referred to as sequence sensitive. Other transitions such as field

reads and writes are sequence agnostic as their semantics entirely depend on the application state before

their execution. Surprisingly, we must treat calls to new as sequence sensitive because it cannot return a

value that was involved in a previous callin or callback. If a value has been passed from the framework to

the application in the past, then the new command will never return that same value since some call to new

in the framework must have previously created it. To simplify our semantics, we assume that there is no
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garbage collection and each invocation of new returns a fresh value. In the next sub-section, we describe the

sequence agnostic memory commands and in the following sub-section, we describe the sequence sensitive

commands.

2.4.2 Relevant Memory Abstraction

The application memory is split into two parts for abstraction, the first is the relevant memory or the

locations that may affect control flow to the defect. In general, the relevant portion of the memory can be

thought of as the “live memory” that will be read at some point between the current location and the defect.

However, any memory locations read after the defect or memory cells that will be written are not relevant to

proving reachability. By representing this irrelevant memory with a special symbol, we save the trouble of

needing to derive a precise abstraction of the full error condition at the location of the defect. We represent

application memories with standard separation logic formula extended with the special symbol irrelevant

representing irrelevant memory. Our other major divergence from the standard separation logic is that all

materialized heap cells must be discharged through field writes in order for a memory to be initial.

Our error condition ℓ14{ciexn t.execute() ↠ okhist · this 7→ a ∗ a.remover 7→ t ∗ irrelevant}

captures the relevant memory with this 7→ a ∗ a since the only memory locations that may be read are

the this variable and the corresponding remover field. Besides these memory locations, no other portion

of memory could affect the error at this point as it cannot be read by this command and therefore can be

represented by irrelevant in the formula. However, it is possible and likely for other disjoint portions of the

memory to have been written and still exist.

Upon jumping back from the entry of onClick to the exit of a previous onClick, the abstract state

must capture whether this is the same click listener l and remover or different ones. In the case of different

instances, they are materialized as new heap cells and constrained to be disaliased from the current relevant

ones. These backwards steps continue through a previous onClick callback and then to the onCreate

callback. Similarly, each subsequent step back must represent the portion of memory read and written in

the relevant memory. Within the onCreate callback, the remover field is written. Proceeding backwards

through the example in the aliased case, the onCreate callback sets the outer and remover fields getting
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to state 3 which includes the initial state indicating that a witness has been found.

2.4.3 Execution Sequence Abstraction

We abstract the sequence of the program execution such that the restrictions imposed by each future

event are precisely captured. Such restrictions take the form of facts such as “execute must have thrown an

exception in the future so another execute must have been invoked in the past on the same object” or “the

instance of FeedRemover that throws the error was allocated in the future therefore nothing can currently

reference the value”. If we observe the requirements of such an abstraction, we can see that two important

aspects must be captured: the order of events and their parameters.

In chapter 5, we show how the decision procedure using this fragment of temporal logic can prove

inclusion of the initial state as well as determining emptiness of abstract message histories. CBCFTL tar-

gets a framework message such as onClick and restricts the message histories under which it could have

happened using a history implication. We assume this definition to completely capture the ordering con-

straints on framework interactions. In the evaluation section, we constrain such behaviors as needed for the

components we encounter.

Distinct from framework messages is the new command which returns a fresh address each time it is

called. This message is distinct from framework messages because it not only constrains temporal ordering,

but all values in the combined application and framework memories. To prove that any state reaching a given

new command respects this behavior, we must constrain that it cannot have referenced the value returned by

new before the new was actually invoked.

Later, when the abstract state containing two executes is reached, the state contains the initial empty

trace because the error condition is satisfied. Then, if the abstract state also does not constrain the memory,

the entire state includes the initial state. In our example, the following abstract state includes the initial state

of the application finding the execution history reaching the defect:

Fwk3 {cb a.onCreate()↠ b1 = ci a.makeButton(a)↠ ldis = new↠ b2 = ci a.makeButton(l1)↠ t = new↠

cb a.onClick()↠ ci t.execute()↠ a.finish()↠

cb a.onClick()↠ ciexn t.execute()↠ okhist · irrelevant}
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The error condition is satisfied because we observed a previous call to execute, the onClick callback

was registered with setOnClickListener, and values may be chosen for the calls to new such that memory

is not referenced before allocation. Additionally, the memory abstraction irrelevant abstracts the initial,

empty, and memory. By choosing satisfying assignments to the a,t, and b logic variables, we can reconstruct

the history of execution reaching the defect as shown in Figure 2.2.

Extending the search to the abstract state where we have a two different activities that each invoke

onCreate and then onClick, we can see how a lack of a temporal constraint on new commands causes

unsoundness (i.e. our tool would say there is a path when there is none). Consider the fixed version of

the application where onClick invokes b.setEnabled(false) where there cannot be a witness, without

precisely capturing the behavior of new a state exists that includes initial. The following abstract state

corresponds to two distinct RemoverActivity instances a and a′ operating on the same FeedRemover

task causing the exception by invoking execute twice. However, such an execution is impossible as both

instances of RemoverActivity must have retrieved their FeedRemover from distinct calls to new. Without

capturing the transitions new r and new r′, there is nothing capturing that r and r′ are disaliased and this

state would erroneously include initial.

Fwk4 {cb a2.onCreate()↠ b4 = ci a2.makeButton(a2)↠ b3 = ci a2.makeButton(l2)↠

cb a.onCreate()↠ b1 = ci a.makeButton(a)↠ b2 = ci a.makeButton(l1)↠

cb a.onClick()↠ ci t.execute↠ b1.setEnabled(false)↠

cb a.onClick()↠ ciexn t.execute()↠ okhist}

2.5 Abducing Targeted Models of Event-driven Frameworks For Verification

Given the difficulty in writing models by hand, the final contribution of this dissertation is a method

of automatically generating framework models. Considering our motivating example, the primary chal-

lenge for a developer is to understand what behavior is possible while using a given callback or callin.

Specifically for our example, whether finish() on the Activity or setEnabled(false) on the Button

disables onClick preventing the defect. The same challenge applies to a program verifier since the spe-

cific behavior of the framework is hidden. This contribution specifically combines the verification and bug
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finding contributions from earlier with a technique to determine the best model based on observations of the

framework’s behavior. Specifically, the best framework model is the one that restricts framework behavior

that would lead to a false alarm, does not restrict behaviors that may be possible, and is syntactically small.

The Historia tool gives us a method of determining if a framework model restricts the framework behavior

that leads to an alarm (true or false). Then, Wistoria provides the functionality to determine if that frame-

work model is consistent with known reachable locations such as the crashing version of our application or

the “Cancel” button’s click listener. For example, crash reports like Figure 1.1 can indicate that framework

models like History Implication 3 should be avoided. With enough reachable locations, a framework model

will be sound with respect to the behavior of the real framework. Therefore, the challenge in this section is

to effectively search the space of possible framework models.

We formulate the framework model abduction problem as an instance of programming-by-example,

a program synthesis technique that finds a candidate program given a set of inputs and outputs. The inputs

are the reachable and target issues and the outputs are either showing reachable issues to be reachable or

proving the target issue unreachable. The key to the problem of programming-by-example is the need to

resolve ambiguity over candidate programs [57]. For the problem of synthesizing framework models based

on a finite number of reachable locations, the ambiguity is whether a given restriction on the framework

behavior is sound. Reachable locations are necessarily weaker than the recorded runtime traces of other

techniques. Weaker runtime data means that the hypothesis space of framework models needs to be smaller.

We reduce the hypothesis space by considering connected framework models or framework models where

the application can observe data flows explaining effects.

This technique takes three inputs: (1) A target location that the user would like to prove correct (i.e.

unreachable), and (2) A corpus of known reachable locations in arbitrary applications that must remain

reachable for a framework model to be sound. (3) A template framework model consisting of history impli-

cations containing holes as well as a set of messages that may be used when searching framework models.

For simplicity we refer to a tuple containing an application and a location as an issue regardless of whether it

is a crash, reachable location, or safe location. A reachable issue is a location that is known to be reachable

when the application is running (i.e. a crash, log statement, sample from a profiler, etc). Similarly, we refer
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to an issue that is proven safe as a unreachable issue.

Upon successfully proving an issue unreachable, this technique will produce a framework model,

that, if sound, proves the issue unreachable. If the issue target issue is reachable and there are a sufficiently

large sample of known reachable locations, then this technique will not be able to produce a framework

model and results in an alarm.

At the core of this technique, it can be thought of as an intelligent “syntactic enumeration” of candi-

date framework models. First, a candidate framework model is proposed and then it may be tested against

the reachable and target issues. Candidate framework models are automatically rejected if they cannot be

shown to be consistent with the issues. Even enumerating models around the size of our motivating example

would be extremely computationally expensive. Therefore, the intelligence comes in with methods to avoid

checking framework models that are not useful for proving the property safe. We first introduce a technique

of enumerating CBCFTL formula with subsection 2.5.1 and then we further restrict the space of framework

models by using a pointer analysis to avoid trivially false clauses.

2.5.1 Exploring the Space of Framework Models with Syntax Guided Synthesis

Figure 2.9 illustrates the process for enumerating framework models. At the top, the starting model

of ci l.onClick()� O b = ci a.makeButton(l) ∧ ■ represents the starting knowledge of the developer.

That is, in order to have an onClick callback on a listener object l, then the button must have been created

with that listener at some point with makeListener. Subsequently, our technique can do the hard part by

figuring out what other conditions should be represented by ■. The formula that this technique substitutes

for ■ automatically chooses between History Implication 1 and History Implication 3.

Each step shown in the figure is a choice of expanding a hole in a history implication with a temporal

operator or boolean connective. For example, the second row of the figure shows a finish or setEnabled

message with a “Once” operator. Each message contained within a temporal operator will also enumerate

the aliasing possibilities with other messages in the history implication. These expansions also consider

the other temporal operators and boolean connectives. For example, ■ ∨ ■ represents expansions where a

logical or is next in the parse tree. We represent the other expansions with “...”. Whenever a model with
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no holes is found, we can test the ability to prove the target issue and consistency with the reachable issues.

For example, the candidate model containing O ci a.finish() can be eliminated as unsound because it can

unsoundly prove the buggy version of our example. However, it becomes clear that the space of models is

huge even for a simple hole. With hundreds of thousands of messages possible in the Android framework

and many containing multiple arguments, the space of models is intractable. How can we intelligently cut

down this search space?

ci l.onClick()�O b = ci a.makeButton(l) ∧ ■
. . .

unsound
HN ci a.finish()

Erroneously proves
buggy version

live
■ ∨ ■

un-targeted
O ci l.setEnabled(false)

Vacuously false
due to aliasing

live
HN ci a.setEnabled(false) ∨ ■

vacuous
HN ci a.onCreate ∨ ■

. . .

live
HN ci a.setEnabled(false) ∨ ■ NS ci a.setEnabled(true)

. . .

success
HN ci a.setEnabled(false) ∨ ci a.setEnabled(false) NS ci a.setEnabled(true)

Figure 2.9: We enumerate the syntactic expansions of CBCFTL formula and test them against our corpus

of reachable locations and the target location to verify. On each candidate model, the model may be: (1)

Unsound if known reachable locations are not reachable under the model, (2) Un-targeted if a clause can

never be true in the available issues, (3) Live if there is still a possibility of expanding, or (4) Successful if

the model proves the location while not excluding known reachable locations.

To address the problem of searching the large space of possible framework models, we look at three
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major optimizations: (1) By only considering “connected” framework models, we avoid many types of vac-

uous models. (2) As a more sound optimization, we can compute over and under approximations of frame-

work models containing holes subsection 2.5.3 and, (3) We can over-approximate the space of targeted

framework models using message graphs subsection 2.5.4. As we will see in section 6.4, these techniques

perform well on benchmarks from the Historia work.

2.5.2 Connected Framework Models

A key observation of this paper is that good framework models restricting the message history explain

that restriction by sharing arguments. Since there may be an unbounded number of UI objects such as

buttons, an action that can enable or disable an onClick message should select which button and click

listeners are inovled. Such selection is done through arguments shared between messages like the listener

object l or the button object b.

We can imagine a candidate history implication ci l.onClick()� O b = ci a.makeButton(l) ∧

HN ci b2.setEnabled(false) where the button b2 used for setEnabled(false) is not necessarily the

same as the one used for makeButton. It is possible to write an event-driven framework that prevents all

button clicks if setEnabled(false) has been called on some button. However, such a behavior is imprac-

tical since an application typically only disables certain buttons at a time. For this reason, we simply assume

that useful history implications always have some connection between messages that appear somewhere in

the message history (i.e. not messages that are negated). Figure 2.10, shown below, specifically illustrates

the connections for the button disabling history implication. In our experiments, we have not found a case

where this assumption excludes a useful history implication.
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cb l.onClick()� O b = ci a.makeButton(l) ∧

(HN ci b.setEnable(false) ∨ ci b.setEnable(false) NS ci b.setEnable(true))

l lb

b b b

Figure 2.10: A history implication is connected if there is a path between shared variables for every message

starting at the target message. Such connected history implications ensure that a framework model explains

the enabledness of a message. In this example, the connections explain which onClick listener is disabled

when a given button is disabled.

2.5.3 Under and Over Approximation of Candidate Framework Models

The next optimization is over and under approximation of the framework models containing holes.

These approximations are used to determine if a framework model with holes can possibly be expanded

into a satisfying framework model. For example, the ■ in the formula O ci l.onCreate() ∨ ■ can not be

expanded to a framework model able to prove the fixed version. This lower bound of imprecision is cause by

the disjunction with onCreate. Since an onCreate always occurs during normal execution, this framework

model can never sufficiently restrict the framework behavior in a way that proves the fixed version of our

motivating example.

The formula on the right-hand side of the � of history implications are restricted to be in prenex

normal form and negation normal form. That is, there is no arbitrary negation of formula, instead nega-

tion is pushed down into the individual temporal operators. This form allows us to easily compute un-

der and over approximations of a history implication containing holes by replacing the hole with true

or false, respectively. In our example, the formula HN ci a.onCreate ∨ ■ is labeled “vacuous” because

HN ci a.onCreate ∨ false is too weak for proving the target issue. Nothing can constrain message histories

more than false.

2.5.4 Targeting the Framework Models Using Message Graphs

A large space of framework models can be quickly eliminated by considering the possible alias-

ing between runtime messages within the applications in the issues. In the figure, we have the formula
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O ci l.setEnabled(false) labeled as “un-targeted” because it can never be true in the available issues.

If we consider the full history implication shown below, there is no message history where the temporal

operator O ci l.setEnabled(false) can be true in either the buggy or fixed version of our example.

ci l.onClick()� O b = ci a.makeButton(l) ∧ O ci l.setEnabled(false)

The reason for this is subtle but important, it is not possible for the button object used by

setEnabled(false) to alias the listener object passed to the first argument of makeButton. It can be seen

that such an alias is not possible since one is of type Button and the other is of type OnClickListener

which are not sub-classes of one another. Therefore, the formula O ci l.setEnabled(false) will be trivially

equivalent to false in the target issue.

Fwk

• = new RemoverActivity()•

• = new Button()•

ci •.finish()• ci •.setEnabled(•)•

• = new FeedRemover()•

ci •.execute()•

cb •.onCreate()•

• = ci •.makeButton(•)• • •

• = new DismissAction()•

cb •.onClick()•

cb •.onClick()•
Line 12
“OK”:

line 20
“Cancel”:

•

•

Figure 2.11: The message graph for the fixed version of Figure 1.1 shows each message that the application

may emit at runtime (under any framework implementation) as nodes and edges between arguments if they

may be aliased at runtime. We argue that messages that connect edges from existing messages in history

implications are the most likely to be useful for proving a target issue.

In order to determine if arguments of messages may alias one another, we use a specialized pointer

analysis called a message graph. This message graph over-approximates the aliasing between messages

under any implementation of the framework (i.e. it uses the “top” model discussed earlier). Figure 2.11
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shows the message graph computed from the applications in our example. Arrows in the graph flow from

allocation sites (i.e. calls to new) to message arguments and return values. The meaning of this graph is

that an argument in one message may only alias another message if they share an incoming allocation site.

For example, the receiver of onClick can never alias setEnabled, meaning that we can determine the

un-targeted history implication is always false before running the more precise and long-running Historia

analysis.

We compute the message graph from the application combined with generated framework code which

is suitable for an-off-the-shelf flow-insensitive pointer analysis. We can generate code that stands in for the

allocation sites of the framework (shown in the Fwk box of Figure 2.11) and then artificially invoke callbacks

such as onCreate. Finally, all allocation sites and callins write to a common framework location to allow

flow of values through the framework to arguments of callbacks or the return value of callins. For our

implementation, the final step is to run the SPARK [77] pointer analysis. The message graph is then defined

by the pointer set at each program location that may emit a callback or callin message.



Chapter 3

Precisely Modeling Event-Driven Protocols and Callback Control Flow

In this section, we investigate the first steps of modeling event driven frameworks precisely enough

to exclude crashes but soundly enough to accommodate observed behavior. Given a running application,

we can record the interactions between the application and the framework then determine inclusion in a

given framework model. Due to the difficulty of building an application-only static analysis, this chapter

focuses on predictive trace verification to determine if a framework model is precise enough. Predictive

trace verification records the interactions between an application and the framework in order to determine

if it can be rearranged to find a crash. For example, Figure 3.1 shows an execution of the buggy version of

our motivating example that does not crash. We can first ensure that framework models accomodate all such

executions and second, we can duplicate and rearrange messages until a crash is observed.
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Interface App

cb a.onCreate()

b = ci a.makeButton(a)

b = ci a.makeButton(l)

ci a.onClick()

ci t.execute()

ci a.finish()

cb a.onClick()

ci t.execute()

Figure 3.1: A non-crashing history of execution for the overview example 2.1. In this section, we show how

models may be written that are precise enough to distinguish crashes and fixes among rearrangements of

such executions while accommodating all observed framework behavior.

Following chapter 2, we want to capture the essence of the app-framework interface with respect to

framework-imposed programming protocols while avoiding a specific representation of the event loop. To do

so, we first formalize a small-step operational semantics for event-driven programs with an abstract machine

model λlife in section 3.1. The λlife abstract machine draws on standard techniques, but explicitly highlights

enabled events and disallowed callins to precisely define event-driven protocols. We then instrument this

semantics to formalize the interface of the event-driven framework with an app, thereby defining the traces

of the observable app-framework interface of a λlife program.

We then use these semantics as a basis for, Lifestate, a precursor language to CBCFTL. Lifestate
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is presented in section 3.2. Recorded message histories with handwritten framework models can be used

to check the model for soundness (validation) or be used in dynamic trace verification to find defects sec-

tion 3.3. Finally, we evaluate these contributions by developing a sound framework model that can be used

to dynamically verify applications but still validates on all recorded message histories.

This chapter includes portions of the ECOOP paper “Lifestate: Event-Driven Protocols and Callback

Control Flow” [88].

3.1 Describing Callback Control-flow of an Application Without the Framework

We present a language that is intentionally minimalistic to center on capturing just the interface be-

tween event-driven frameworks and their client applications. By design, we leave out many aspects of real-

world event-driven framework implementations (e.g., Android, Swing, or Node.js), such as typing, object-

orientation, and module systems that are not needed for formalizing the dialogue between frameworks and

their apps (cf. section 2.2). Our intent is to illustrate, through examples, that event-driven frameworks could

be implemented in λlife and that λlife makes explicit the app-framework interface to define observable traces

consisting of back-messages and in-messages (subsection 3.1.3).
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expressions e ∈ Expr ::=bind v1 v2 | invoke v | disallow v | allow v thunks and calls

| enable v | disable v

| force κ events and forcing

| v | let x = e1 in e2 | · · · other expressions

functions λ ::= x =>g e packages g ::= App | Fwk values v ∈ Val ::= x | λ | κ | () | · · · | thk

variables x ∈ Var thunks κ ∈ Thunk ::= λ[v] thunk stores µ, ν ::= · | µ;κ

continuations k ::= • | k ▷ x.e | κ | k≫κ states σ ∈ State ::= ⟨e, µ, ν, k⟩ | bad

(a) The syntax and the semantic domains.

σ→ σ′

Enable

⟨enable κ, µ, ν, k⟩ → ⟨κ, µ;κ, ν, k⟩

Disable

⟨disable κ, µ;κ, ν, k⟩ → ⟨κ, µ, ν, k⟩

Event

κ ∈ µ

⟨v, µ, ν, •⟩ → ⟨force κ, µ, ν, κ⟩

Disallow

⟨disallow κ, µ, ν, k⟩ → ⟨κ, µ, ν;κ, k⟩

Allow

⟨allow κ, µ, ν;κ, k⟩ → ⟨κ, µ, ν, k⟩

Invoke

κ < ν

⟨invoke κ, µ, ν, k⟩ → ⟨force κ, µ, ν, k⟩

InvokeDisallowed

κ ∈ ν

⟨invoke κ, µ, ν, k⟩ → bad

Bind

⟨bind λ v, µ, ν, k⟩ → ⟨λ[v], µ, ν, k⟩

Force

(x′ =>g′ e′)[v′] = κ

⟨force κ, µ, ν, k⟩ → ⟨[κ/thk][v′/x′]e′, µ, ν, k≫κ⟩

Return

⟨v, µ, ν, k≫κ⟩ → ⟨v, µ, ν, k⟩

Finish

⟨v, µ, ν, κ⟩ → ⟨v, µ, ν, •⟩

Let

⟨let x = e1 in e2, µ, ν, k⟩ → ⟨e1, µ, ν, k ▷ x.e2⟩

Continue

⟨v, µ, ν, k ▷ x.e2⟩ → ⟨[v/x]e2, µ, ν, k⟩

(b) Semantics. Explicitly enable, disable, disallow, and allow thunks.

Figure 3.2: λlife, a core model of event-driven programs capturing enabledness of events and disallowedness

of invocations.
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3.1.1 Syntax: Enabling, Disabling, Allowing, and Disallowing

The syntax of λlife is shown at the top of Figure 3.2a, which is a λ-calculus in a let-normal form. The

first two cases of expressions e split the standard call-by-value function application into multiple steps (simi-

lar to call-by-push-value [75]). The bind λ v expression creates a thunk κ = λ[v] by binding a function value

λ with an argument value v. We abuse notation slightly by using λ as the meta-variable for function values

(rather than as a terminal symbol). A thunk may be forced by direct invocation invoke κ—or indirectly

via event dispatch. For example, let t be bound to an OnClickListener and onClick to an app-defined

callback (e.g., Line 12 from Figure 2.1), then the direct invocation of a callback from the framework can be

modeled by the two steps of binding and then invoking:

let cb = bind onClick l in invoke cb

Now in λlife, a thunk κ may or may not have the permission to be forced. Revoking and re-granting the

permission to force a thunk via direct invocation is captured by the expressions disallow κ and allow κ,

respectively. A protocol violation can thus be modeled by an application invoking a disallowed thunk.

The direct invocation expressions are mirrored with expressions for event dispatch. An enable κ

expression enables a thunk κ for the external event-processing system (i.e., gives the system permission

to force the thunk κ), while the disable κ expression disables the thunk κ. For example, let l be bound

to an OnClickListener and handleOnClick to an internal framework-defined function for handling a

post-execute event, then enqueuing such an event can be modeled by the two steps of binding then enabling:

let h = bind handleOnClick l in enable h

By separating function application and event dispatch into binding to create a thunk κ = λ[v] and

then forcing it, we uniformly make thunks the value form that can be granted permission to be invoked (via

allow κ) or for event dispatch (via enable κ). The force κ expression is then an intermediate that represents

a thunk that is forcible (i.e., has been permitted for forcing via allow κ or enable κ).

The remainder of the syntax is the standard part of the language:
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values v, variable binding let x = e1 in e2, and whatever other operations of interest · · · (e.g., arithmetic,

tuples, control flow, heap manipulation). That is, we have made explicit the expressions to expose the

app-framework interface and can imagine whatever standard language features in · · · in framework imple-

mentations. The values v of this expression language are variables x, function values λ, thunks κ, unit (),

and whatever other base values of interest · · · . Two exceptions are that (1) the currently active thunk is

available via the thk identifier (see subsection 3.1.2) and (2) functions x =>g e are tagged with a package g

(see subsection 3.1.3).

3.1.2 Semantics: Protocol Violations

At the bottom of Figure 3.2a, we consider an abstract machine model enriched with an enabled-

events store µ, and a disallowed-calls store ν. These are finite sets of thunks, which we write as a list

κ1; · · · ;κn. The enabled-events store µ saves thunks that are permitted to be forced by the event loop, while

the disallowed-calls store ν lists thunks that are not permitted to be forced by invocation. These thunk stores

make explicit the event-driven application-programming protocol (that might otherwise be implicit in, for

example, flag fields and conditional guards).

A machine state σ : ⟨e, µ, ν, k⟩ consists of an expression e, enabled events µ, disallowed calls ν, and

a continuation k. A continuation k can be the top-level continuation • or a continuation for returning to

the body of a let expression, which are standard. Continuations are also used to record the active thunk

via κ and k≫κ corresponding to the run-time stack of activation records. These continuation forms record

the active thunk and are for defining messages and the app-framework interface in subsection 3.1.3. Since

events occur non-deterministically and return to the main event loop, it is reasonable to assume that a state σ

should also include a heap, and the expression language should have heap-manipulating operations through

which events communicate. We do not, however, formalize heap operations since they are standard.

We define an operational semantics in terms of the judgment form σ → σ′ for a small-step transi-

tion relation. In Figure 3.2b, we show the inference rules defining the reduction steps related to enabling-

disabling, disallowing-allowing, invoking, creating, and finally forcing thunks. The rules follow closely the

informal semantics discussed in subsection 3.1.1. Observe that Enable and Allow both permit a thunk to be
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forced, and Disable and Disallow remove the permission to be forced for a thunk. The difference between

Enable and Disable versus Allow and Disallow is that the former pair modifies the enabled events µ, while

the latter touches the disallowed calls ν.

The Event rule says that when the expression is a value v and the continuation is the top-level contin-

uation •, then a thunk is non-deterministically chosen from the enabled events µ to force. Observe that an

enabled event remains enabled after an Event reduction, hence λlife can model both events that do not self-

disable (e.g., the Click event) and those that are self-disabling (e.g., the Create event). The Invoke rule has

a similar effect, but it checks that the given thunk is not disallowed in ν before forcing. The InvokeDisallowed

rule states that a disallowed thunk terminates the program in the bad state. And the Bind rule simply states

that thunks are created by binding an actual argument to a function value.

The Force rule implements the “actual application” that reduces to the function body e′ with the argu-

ment v′ substituted for the formal x′ and the thunk substituted for the identifier thk, that is, [κ/thk][v′/x′]e′.

To record the stack of activations, we push the forced thunk κ on the continuation (via k≫κ). The Return

and Finish rules simply state that the recorded thunk κ frames are popped on return from a Force and Event,

respectively. The Return rule returns to the caller via the continuation k, while the Finish rule returns to the

top-level event loop •. The last line with the Let and Continue rules describe, in a standard way, evaluating

let-binding.

A program e violates the event-driven protocol if it ends in the bad state from the initial state

⟨e, ·, ·, •⟩. For example, the no-execute-call-on-already-executing-AsyncTask protocol can be captured

by a disallow. We let execute be a framework function (i.e., tagged with Fwk) that takes an AsyncTask t.

let execute = (t =>Fwk disallow thk; . . . let h = bind handlePostExecute t in

enable h)

The execute function first disallows itself (via disallow thk) and does some work (via . . .) before

enabling the handlePostExecute event handler (writing e1; e2 as syntactic sugar for sequencing). The

disallow thk asserts that this thunk cannot be forced again—doing so would result in a protocol violation

(i.e., the bad state).
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In contrast to an event-driven framework implementation, the state of a λlife program does not have

a queue. As we see here, a queue is an implementation detail not relevant for capturing event-driven pro-

gramming protocols. Instead, λlife models the external environment, such as, user interactions, by the non-

deterministic selection of an enabled event.

3.1.3 Messages, Observable Traces, and the App-Framework Interface

To minimally capture how a program is composed of separate framework and app code, we add some

simple syntactic restrictions to λlife programs. Function values λ tagged with the Fwk are framework code

and the App tag labels app code. We express a framework implementation ⟨FunFwk, λinit⟩ with a finite set of

framework functions FunFwk and an initialization function λinit ∈ FunFwk. A program e uses the framework

implementation if it first invokes the function λinit, and all the functions labeled as Fwk in e are from FunFwk.

In a typical, real-world framework implementation, the framework implicitly defines the application-

programming protocol with internal state to check for protocol violations. The Enable, Disable, Allow, and

Disallow transitions make explicit the event-driven protocol specification in λlife. Thus, it is straightfor-

ward to capture that framework-defined protocols by syntactically prohibiting the app from using enable κ,

disable κ, allow κ, and disallow κ. Again, the enabled-event store µ and the disallowed-call store ν in

λlife can be seen as making explicit the implicit internal state of event-driven frameworks that define their

application-programming protocols.

The app interacts with the framework only by “exchanging messages.” The app-framework dialogue

diagrams from Figures 2.2 and 2.3 depicts the notion of messages as arrows back-and-forth between the

framework and the app. The framework invokes callbacks and returns from callins (the arrows from left to

right), while the app invokes callins and returns from callbacks (the arrows from right to left). To formalize

this dialogue, we label the observable transitions in the judgment form and define an observable trace—

a trace formed only by these observable messages. Being internal to the framework, the Enable, Disable,

Allow, and Disallow transitions are hidden, or unobservable, to the app.

In Figure 3.3, we define the judgment form σ
−→

m σ′, which instruments our small-step transition

relation σ → σ′ with message m. We define a callback as an invocation that transitions from framework
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back-messages mbk ∈ Σbk ::= cb κ | v= ciret κ in-messages min ∈ Σin ::= ci κ | v= cbret κ
messages m ∈ Σ ::= mbk | min | dis min | ϵ observable traces ω ∈ Σ∗ ::= ϵ | ωm

σ
−→

m σ′

ForceCallback
(x′ =>App e′)[v′] = κ Fwk = pkg(k)

⟨force κ, µ, ν, k⟩
−→
cb κ ⟨[κ/thk][v′/x′]e′, µ, ν, k≫κ⟩

ForceCallin
(x′ =>Fwk e′)[v′] = κ App = pkg(k)

⟨force κ, µ, ν, k⟩
−→
ci κ ⟨[κ/thk][v′/x′]e′, µ, ν, k≫κ⟩

ReturnCallin
(x′ =>Fwk e′)[v′] = κ App = pkg(k)

⟨v, µ, ν, k≫κ⟩
−→

v= ciret κ ⟨v, µ, ν, k⟩

ReturnCallback
(x′ =>App e′)[v′] = κ Fwk = pkg(k)

⟨v, µ, ν, k≫κ⟩
−→

v= cbret κ ⟨v, µ, ν, k⟩

InvokeDisallowed
κ ∈ ν

⟨invoke κ, µ, ν, k⟩
−→

dis ci κ bad

thk(κ) def
= thk(k≫κ) def

= κ thk(k ▷ x.e) def
= thk(k) pkg(k) def

= g if (x =>g e)[v] = thk(k)

Figure 3.3: The instrumented transition relationσ −→m σ′ defines the app-framework interface and observing
the event-driven protocol.

to app code and a callin as an invocation from app to framework code. In λlife, this definition is captured

crisply by the execution context k in which a thunk is forced. In particular, we say that a thunk κ is a callback

invocation cb κ if the underlying callee function is an app function (package App), and it is called from a

framework function (package Fwk) as in rule ForceCallback. The thk(·) function inspects the continuation

for the running, caller thunk. The pkg(·) function gets the package of the running thunk.

Analogously, a thunk κ is a callin ci κ if the callee function is in the Fwk package, and the caller thunk

is in the App package via rule ForceCallin. For example, letting handleOnClick be a framework function

(i.e., in package Fwk) and onClick be an App function, the observable transition from the framework to the

app defines the forcing of cb as a callback:

let onClick = (l =>App . . .) in

let handleOnClick = (l =>Fwk let cb = bind onClick l in invoke cb) in

In the above, we focused on the transition back-and-forth between framework and app code via calls.

Returning from calls can also be seen as a “message exchange” with a return from a callin as another kind

of back-message going from framework code to app code (left-to-right in the overview figures). We write

a callin-return back-message v= ciret κ indicating the returning thunk κ with return value v. Likewise, a
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return from a callback is another kind in-message going from app code to framework code (right-to-left).

We instrument returns in a similar way to forcings with the return back-message with ReturnCallin and the

return in-message with ReturnCallback.

Finally to make explicit protocol violations, we instrument the InvokeDisallowed rule to record the

disallowed-callin invocations. These rules replace the corresponding rules Force, Return, and InvokeDisallowed

from Figure 3.2b. For replacing the Force and Return rules, we elide two rules, one for each, where there

is no switch in packages (i.e., g′ = pkg(k) where g′ is the package of the callee message). These “uninter-

esting” rules and the remaining rules defining the original transition relation σ→ σ′ not discussed here are

simply copied over with an empty message label ϵ.

Observable Traces and Dynamic-Analysis Instrumentation.

As described above, the app-framework interface is defined by the possible messages that can ex-

changed where messages consist of callback-callin invocations and their returns. A possible app-framework

interaction is thus a trace of such observable messages.

Definition 1 (App-Framework Interactions as Observable Traces). Let paths(e) be the path semantics of λlife

expressions e that collects the finite sequences of alternating state-transition-state σmσ′ triples according to

the instrumented transition relation σ −→m σ′. Then, an observable trace is a finite sequence of messages

ω : m1 . . .mn obtained from a path by dropping the intermediate states and keeping the non-ϵ messages. We

write JeK for the set of the observable traces obtained from the set of paths, paths(e), of an expression e.

An observable trace ω violates the event-driven application-programming protocol if ω ends with a

disallowed dis message.

These definitions yield a design for a dynamic-analysis instrumentation that observes app-framework

interactions. The trace recording in Verivita obtains observable traces ω like the app-framework dialogue

diagrams from the overview by following the instrumented semantics σ −→m σ′. Verivita maintains a stack

similar to the continuation k to emit the messages corresponding to the forcings and returns of callbacks and

callins, and it emits disallowed dis κ messages by observing the exceptions thrown by the framework.
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3.2 Specifying Protocols and Modeling Callback Control Flow

CBCFTL, as presented in the overview, is a restricted form of Lifestate that is still able to express

the properties we need and makes later decision procedures easier. Therefore, the explanation up until this

point has focused on CBCFTL. Lifestate is an orthogonal method of capturing message histories. We have

included it here for those who wish to dive deeper into the subject and understand the design of CBCFTL

better.

The original design of lifestate was to capture the execution that leads to either an enable or disable of

a callback. Figure 3.4 shows one half of the CBCFTL onClick history implication written in lifestate.

On the left of the ↛or →operator is a regular expression matching the conditions under which the tar-

get callback should be disabled or enabled respectively. The right-hand side is the target callback or

callin. For disabling onClick the regular expression matches when makeButton was invoked and a

setEnabled(false) has been invoked “most recently”. “Most recently” is expressed with the regular

expression ci b.setEnabled(false); (¬ci b.setEnabled(true) ∧ ·) combining the sequence operator ;,

negation ¬, and an operator to match a single symbol ·.

b = ci a.makeButton(l) ∧ ci b.setEnabled(false); (¬ci b.setEnabled(true) ∧ ·)↛cb l.onClick()

Figure 3.4: Lifestate was the predecessor and inspiration for the more concise CBCFTL.

As we will see in the next chapter, CBCFTL is able to represent the properties that applications

generally rely on while being much easier for both writing models and reasoning about. The most important

reason Lifestate was replaced with CBCFTL is that the variables in Lifestate are implicitly quantified as “for

all”. Such quantification made abstracting the program state extremely difficult due to quantifier alternation.

As a more minor reason, we found that certain patterns appeared in almost every Lifestate model such as

the “most recently” pattern. Additionally, it was often difficult to for the developer of a framework model to

avoid inconsistent models that both enabled and disabled a message simultaneously. The details of Lifestate
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are explained in this chapter, both because this was the language used for the experiments in section 3.4 and

because certain properties could be expressed in Lifestate that are not possible in CBCFTL.

Lifestate for Specifying Protocols and Modeling Callback Control Flow

Using λlife as a concrete semantic foundation, we first formalize an abstraction of event-driven pro-

grams composed of separate app and framework code with respect to what is observable at the app-framework

interface. This abstract transition system captures the possible enabled-event and disallowed-call stores in-

ternal to the framework that are consistent with observable traces, essentially defining a family of lifestate

framework abstractions. Then, we instantiate this definition for a specific lifestate language that both speci-

fies event-driven application-programming protocols and models callback control flow.

The main point in these definitions is that lifestate modeling of callback control flow can only de-

pend on what is observable at the app-framework interface. Furthermore, the concrete semantic foundation

given by λlife leads to a careful definition of soundness and precision and a basis for model validation and

predictive-trace verification (section 3.3).
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states σ̂ ::= ⟨µ̂, ν̂, ω⟩ | bad ω permitted-back µ̂ ::= · | µ̂;mbk prohibited-in ν̂ ::= · | ν̂;min

σ̂ −→ σ̂′

PermittedBack

mbk ∈ µ̂ ω′ = ωmbk µ̂′ = updbk
S (ω′, µ̂) ν̂′ = updin

S (ω′, ν̂)

⟨µ̂, ν̂, ω⟩ −→ ⟨µ̂′, ν̂′, ω′⟩

ProhibitedIn

min ∈ ν̂ ω′ = ω(dis min )

⟨µ̂, ν̂, ω⟩ −→ bad ω′

PermittedIn

min < ν̂ ω′ = ωmin µ̂′ = updbk
S (ω′, µ̂) ν̂′ = updin

S (ω′, ν̂)

⟨µ̂, ν̂, ω⟩ −→ ⟨µ̂′, ν̂′, ω′⟩

Figure 3.5: This transition system defines an abstraction of the framework-internal state consistent with

an observable trace ω with respect to a framework abstraction S. The abstract state σ̂ contains a store

of permitted back-messages µ̂ and a store of prohibited in-messages ν̂, corresponding to an abstraction of

enabled events and disallowed calls, respectively. The meaning of the framework abstraction S is captured

by the store-update functions updbk
S and updin

S , which determine how an abstract store changes on a new

message.

Abstracting Framework-Internal State by Observing Messages In Figure 3.5, we define the

transition system that abstracts the framework-internal state consistent with an observable trace ω. An ab-

stract state ⟨µ̂, ν̂, ω⟩ contains a store of permitted back-messages µ̂ and a store of prohibited in-messages

ν̂. What the transition system captures are the possible traces consistent with iteratively applying a frame-

work abstraction S to the current abstract state: it performs a transition with a back-message mbk only if

mbk is permitted mbk ∈ µ̂, and a transition with an in-message min only if min is not prohibited min < ν̂.

The trace ω in an abstract state saves the history of messages observed so far. In the most general setting

for modeling the event-driven framework, the transition system can update the stores µ̂ and ν̂ as a function

of the history of the observed messages ω. These updates are formalized with the store-update functions

updbk
S (ω, µ̂) and updin

S(ω, ν̂) that define an abstraction S of the event-driven framework describing both its

application-programming protocol and its callback control flow. A framework abstraction S also defines

the initial abstract state ⟨µ̂init
S , ν̂init

S , ϵ⟩ that contains the initial (abstract) state of the stores of the permitted
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back-messages and prohibited in-messages.

The semantics JSK of a framework abstraction S is the set of observable traces of the transition system

defined in Figure 3.5 instantiated with S. We get sequences of states from the transition relation σ̂ −→ σ̂′,

read the observable trace ω from the final state, and form a set of all such observable traces.

Definition 2 (Soundness of a Framework Abstraction). (1) A framework abstraction S is a sound abstraction

of a λlife program e if JeK ⊆ JSK; (2) A framework abstraction S is a sound abstraction of a framework

implementation ⟨FunFwk, λinit⟩ if and only if S is sound for every possible program e that uses the framework

implementation ⟨FunFwk, λinit⟩.

The possible observable traces of a framework abstraction S is slightly richer than observable λlife

traces in that callback-return messages (v= cbret κ) may also be prohibited (in addition callin-invocations

ci κ). Prohibiting callback-return messages corresponds to specifying a protocol where the app yields an

invalid return value. If we desire to capture such violations at the concrete level, it is straightforward to

extend λlife with “return-invalid” transitions by analogy to InvokeDisallowed transitions.

Finally, if S1 and S2 are sound specifications, we say that S1 is at least as precise as S2 if JS1K ⊆ JS2K.
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parametrized messages m ::= cb λ[p] | p′ = ciret λ[p] | ci λ[p] | p′ = cbret λ[p]

lifestate rules s ::= r → m | r ↛ m

lifestate abstractions S ::= · | sS

trace matchers: regular expressions of parametrized messages r

symbolic variables x̂ ∈ SVar parameters p ∈ SVar ∪ Val binding maps θ ::= · | θ, x̂ 7→ v

(a) A lifestate abstraction is a set of rules that permits (→) or prohibits (↛) parametrized messages m.

updbk
S (ω, µ̂) def

=

{
mbk
∣∣∣∣ consistentS (ω) ∧

(
¬ prohibitS (ω,mbk ) ∧ (permitS (ω,mbk ) ∨ mbk ∈ µ̂)

) }
updin

S (ω, ν̂) def
=

{
min
∣∣∣∣ consistentS (ω)→

(
¬ permitS (ω,min ) ∧ (prohibitS (ω,min ) ∨ min ∈ ν̂)

) }
[1ex]

permitS (ω,m) def
= ∃r → m ∈ S,∃θ, (ω, θ |= r) ∧ θ(m) = m

prohibitS (ω,m) def
= ∃r ↛ m ∈ S,∃θ, (ω, θ |= r) ∧ θ(m) = m

consistentS (ω) def
= ∀m ∈ Σ, (permitS (ω,m)↔ ¬ prohibitS (ω,m))[1ex]

µ̂init
S

def
= updbk

S (ϵ,Σbk) ν̂init
S

def
= updin

S (ϵ, ∅)

(b) Semantics of a lifestate framework abstraction. The store-update functions updbk
S and updin

S find rules from S that

match the given trace ω and update the store according to a consistent binding θ from symbolic variables to values.

Figure 3.6: Lifestate is a language for simultaneously specifying event-driven protocols and modeling call-

back control flow in terms of the observable app-framework interface.

A Lifestate Abstraction.

We arrive at lifestates by instantiating the framework abstraction S in a direct way as shown in Fig-

ure 3.6. To describe rules independent of particular programs or executions, we parametrize messages

with symbolic variables x̂ ∈ SVar. The definition of the parametrized messages m is parallel to the non-

parameterized version but using parameters instead of simply concrete values v. We call a message m

ground when it does not have symbolic variables (from SVar), and we distinguish the ground and pa-

rameterized messages by using normal m and bold m fonts, respectively. For example, the parametrized

callback-invocation message cb λ[x̂] specifies that a callback function λ is invoked with an arbitrary value
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from Val. The variable x̂ can be used across several messages in a rule, expressing that multiple messages

are invoked with, or return, the same value.

A lifestate abstraction S is a set of rules, and a rule consists of trace matcher r that when matched

either permits (→ operator) or prohibits (↛ operator) a parametrized message m. As just one possible

choice for the matcher r, we consider r to be a regular expression where the symbols of the alphabet are

parametrized messages m. In matching a trace ω to a regular expression of parametrized messages, we

obtain a binding θ that maps symbolic variables from the parametrized messages to the concrete values

from the trace. Given a binding θ and a message m, we write θ(m) to denote the message m′ obtained by

replacing each symbolic variable x̂ in m with θ(x̂) if defined.

The semantics of lifestates is given by a choice of store-update functions updbk
S and updin

S in Figure 3.6b

and the abstract transition relation σ̂ −→ σ̂′ defined previously in Figure 3.2. The store-update functions

work intuitively by matching the given trace ω against the matchers r amongst the rules in S and then

updating the store according to the matching rules {s1, . . . , sn} ⊆ S.

To describe the store-update functions in Figure 3.6b, we write ω, θ |= r to express that a trace ω and

a binding θ satisfy a regular expression r. The definition of this semantic relation is standard, except for

parametrized messages m. Here, we explain this interesting case for when the trace ω and the binding θ

satisfy the regular expression m (i.e., ω, θ |= m):

ω, θ |= m iff ω = m and θ(m) = m for some ground message m

A necessary condition for ω, θ |= m is, for example, that θ must assign a value to all the variables in m, to

get a ground message, and the message must be equal to the trace ω. Note that, if there is no such ground

message for m with the binding θ, then ω, θ ̸|= m.

Now, the function updbk
S (ω, µ̂) captures how the state of the permitted back-messages store µ̂ changes

according to the rules S. As a somewhat technical point, a back-message can only be permitted if the

rules S are consistent with respect to the given trace ω (i.e., consistentS(ω)). The consistentS(ω) predicate

holds iff there are no rules that permits and prohibits m for the same message m and trace ω. Then, if

the predicate consistentS(ω) is true, the back-message mbk must not be prohibited given the trace ω (i.e.,
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¬ prohibitS(ω,mbk)). Finally, if back-message mbk is not prohibited, either it is permitted by a specification

for this trace ω (i.e., permitS(ω,mbk)) or it was already permitted in the current store µ̂ (i.e., mbk ∈ µ̂).

The function updin
S(ω, ν̂) is similar, but it is defined for the prohibited in-messages store ν̂. An in-message

min is prohibited first if the rules are not consistent. Then, if the rules are consistent, the in-message min

must not be permitted by this trace, and either it is prohibited by a rule for this trace or the in-message

was already prohibited in the current store ν̂. The auxiliary predicates permitS(ω,m) and prohibitS(ω,m)

formally capture these conditions. The permitS(ω,m) predicate is true iff there is a rule r → m in the

specification S that permits a message m and a binding θ, such that the trace and the binding satisfy the

regular expression (ω, θ |= r), and the ground message permitted by the rule θ(m) is m. The prohibitS(ω,m)

predicate is analogous but for prohibit rules.

A key point is that the store-update functions updbk
S (ω, µ̂) and updin

S(ω, ν̂) are defined only in terms of

what is observable at the app-framework interface ω and stores of permitted back-messages µ̂ and prohibited

in-messages ν̂. Lifestate abstractions S do not depend on framework or app expressions e, nor framework-

internal state.

3.3 Dynamic Reasoning with Lifestates

Lifestates are precise and detailed abstractions of event-driven frameworks that simultaneously spec-

ify the protocol that the app should observe and the callback control-flow assumptions that an app can

assume about the framework. The formal development of lifestates in the above offers a clear approach for

model validation and predictive-trace verification. In this section, we define the model validation and ver-

ification problem and provide an intuition of their algorithms using the formal development in the previous

sections.

Validating Lifestate Specifications. As documentation in a real framework implementation like

Android is incomplete and ambiguous, it is critical that framework abstractions have a mechanism to validate

candidate rules—in a manner independent of, say, a downstream static or dynamic analysis.

We say that a specification S is valid for an observable trace ω if ω ∈ JSK. If a specification S is not

valid for a trace ω from a program e, then S is not a sound abstraction of e.
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We can then describe an algorithm that checks if S is a valid specification for a trace ω with a

reduction to a model checking problem. Lifestate rules specify the behavior of an unbounded number of

objects through the use of symbolic variables x̂ ∈ SVar that are implicitly universally quantified in the

language and hence describe an unbounded number of messages. However, as an observable trace ω has a

finite number of ground messages, the set of messages that we can use to instantiate the quantifiers is also

finite. Thus, the validation algorithm first “removes” the universal quantifier with the grounding process

that transforms the lifestate abstraction S to a ground abstraction S containing only ground rules.

The language JS K of a ground specification S can be represented with a finite transition system since

the set of messages in S is finite, and lifestate rules are defined using regular expressions. We then pose the

validation problem as a model checking problem that we solve using off-the-shelf symbolic model checking

tools [26]. The transition system that we check is the parallel composition (i.e., the intersection of the

languages of transition systems) of the transition system that accepts only the trace ω and the transition

system σ̂ −→ σ̂′ parametrized by the grounded lifestate abstraction S . The lifestate abstraction S is valid if

and only if the composed transition system reaches the last state of the trace ω.

Dynamic Lifestate Verification

Because of the previous sections building up to lifestate validation, the formulation of the dynamic

verification is relatively straightforward and offers a means to evaluate the expressiveness of lifestate speci-

fication.

We define the set of sub-traces of a trace ω = ω1 . . . ωl as S ubω
def
= {ω1, . . . , ωl}, where ω′ ∈ S ubω

if ω′ is a substring of ω that represents the entire execution of a callback directly invoked by an event

handler. We consider the set J(ω1 + . . . + ωl)∗K of all the traces obtained by repeating the elements in S ubω

zero-or-more times and Ωω,e
def
= JeK∩ J(ω1 + . . .+ωl)∗K its intersection with the traces of the λlife program e.

Given an observable trace ω of the program e (i.e., ω ∈ JeK), the dynamic verification problem

consists of proving the absence of a trace ω′ ∈ Ωω,e that violates the application-programming protocol.

Since we cannot know the set of traces JeK for a λlife program e (i.e., the set of traces for the app composed

with the framework implementation), we cannot solve the dynamic verification problem directly. Instead, we

solve an abstract version of the problem, where we use a lifestate specification S to abstract the framework
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implementation ⟨FunFwk, λinit⟩. Let Ωω,S
def
= JSK ∩ J(ω1 + . . . + ωl)∗K be the set of repetitions of the trace ω

that can be seen in the app-framework interface abstraction defined by S.

Given a trace ω ∈ JeK and a sound specification S, the abstract dynamic verification problem

consists of proving the absence of a trace ω′ ∈ Ωω,S that violates the application-programming protocol.

If we do not find any protocol violation using a specification S, then there are no violations in the possible

repetitions of the concrete trace ω. Observe that the key verification challenge is getting a precise enough

framework abstraction S that sufficiently restricts the possible repetitions of the concrete trace ω.

We reduce the abstract dynamic verification problem to a model checking problem in a similar way

to validation: we first generate the ground model S from the lifestate model S and the trace ω. Then, we

construct the transition system that only generates traces in the set Ωω,S by composing the transition system

obtained from the ground specification S and the automaton accepting words in J(ω1 + . . . + ωl)∗K. This

transition system satisfies a safety property iff there is no trace ω ∈ Ωω,S that violates the protocol.

3.4 Empirical Evaluation

We implement our approach for Android in the Verivita tool that (i) instruments an Android app to

record observable traces, (ii) validates a lifestate model for soundness against a corpus of traces, and (iii) as-

sesses the precision of a lifestate model with dynamic verification. We use the following research questions

to demonstrate that lifestate is an effective language to model event-driven protocols, and validation is a

crucial step to avoid unsoundness.

RQ1 Lifestate Precision. Is the lifestate language adequate to model the callback control flow of Android?

The paper hypothesizes that carefully capturing the app-framework interface is necessary to obtain

precise protocol verification results.

RQ2 Lifestate Generality. Do lifestate models generalize across apps? We want to see if a lifestate model

is still precise when used on a trace from a new, previously unseen app.

RQ3 Model Validation. Is validation of callback control-flow models with concrete traces necessary to

develop sound models? We expect to witness unsoundnesses in existing (and not validated) callback
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control-flow models and that validation is a crucial tool to get sound models.

Additionally, we considered the feasibility of continuous model validation. The bottom line is that we could

validate 96% of the traces within a 6 minute time budget.

properties non-crashing traces callback control-flow models

top lifecycle lifestate lifecycle++

sensitive sensitive verifiable verified verified verified verified bad

callin (n) (n) (n) (%) (n) (%) (n) (%) (n) (%) (n)

AlertDialog

dismiss 16 6 0 0 0 0 6 100 6 100 0

show 43 34 17 50 17 50 28 82 24 71 0

AsyncTask

execute 4 4 0 0 4 100 4 100 0 0 0

Fragment

getResources 10 10 0 0 0 0 10 100 4 40 0

getString 10 10 0 0 0 0 2 20 0 0 0

setArguments 19 19 1 5 1 5 19 100 13 68 0

total 102 83 18 22 22 27 69 83 47 57 0

Table 3.1: Precision of callback control-flow models. The sensitive callin column lists protocol properties

by the callin that crashes the app when invoked in a bad state. We collect a total of 50 traces from 5

applications with no crashes. The sensitive column lists the number of traces where the application invokes

a sensitive callin. To provide a baseline for the precision of a model, we count the number of traces without

a manually-confirmed real bug in the verifiable column. There are four columns labeled verified showing

the number and percentage of verifiable traces proved correct using different callback control-flow models.

The lifestate columns capture our contribution. The lifecycle++ columns capture the current practice for

modeling the Android framework. The bad column lists the number of missed buggy traces and is discussed

further in RQ2.

RQ1: Lifestate Precision.

The bottom line of Table 3.1 is that lifestate modeling is essential to improve the percentage of verified
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traces to 83%—compared to 57% for lifecycle++ and 27% for lifecycle modeling.

Methodology. We collect execution traces from Android apps and compare the precision obtained

verifying protocol violations with four different callback control-flow models. The first three models are

expressed using different subsets of the lifestate language. The top model is the least precise (but clearly

sound) model where any callback can happen at all times. The lifecycle model represents the most precise

callback control-flow model that we can express only using callbacks only. For example, the lifecycle model

of Activity would only follow the black lines in the figure shown by Figure 2.4. The lifestate model uses

the full lifestate language, and hence also in-messages such as setEnabled and makeButton. It represents

the most precise model that we can represent with lifestate. To faithfully compare the precision of the

formalisms, we improved the precision of the lifecycle and lifestate models minimizing the false alarms

from verification. And at the same time, we continuously run model validation to avoid unsoundnesses,

as we discuss below in RQ3. As a result of this process, we modeled the behavior of several commonly-

used Android classes, including Activity, Fragment, AsyncTask, CountdownTimer, View, PopupMenu,

ListView, and Toolbar and their subclasses. Excluding similar rules for subclasses, this process resulted

in a total of 167 lifestate rules.

We further compare with an instance of a lifecycle++ model, which refines component lifecycles

with callbacks from other Android objects. Our model is a re-implementation of the model used in Flow-

Droid [11] that considers the lifecycle for the UI components (i.e., Activity and Fragment) and bounds the

execution of a pre-defined list of callback methods in the active state of the Activity lifecycle. Figure 2.4

shows an example of edges added by lifecycle++ with the onClick callback attached in the Activity

lifecycle. In the lifecycle only model, callbacks like onClick may happen at any time.

To find error-prone protocols, we selected sensitive callins, shown in the first column of Table 3.1,

that frequently occur as issues on GitHub and StackOverflow [42, 110, 7, 94, 123, 122]. We then specify

the lifestate rules to allow and disallow the sensitive callins.

To create a realistic trace corpus for RQ1, we selected five apps by consulting Android user groups to

find those that extensively use Android UI objects, are not overly simple (e.g., student-developed or sample-

projects apps), and use at least one of the sensitive callins. To obtain realistic interaction traces, we recorded
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manual interactions from a non-author user who had no prior knowledge of the internals of the app. The

user used each app 10 times for 5 minutes (on an x86 Android emulator running Android 6.0)—obtaining

a set of 50 interaction traces. With this trace-gathering process, we exercise a wide range of behaviors of

Android UI objects that drives the callback control-flow modeling.

To evaluate the necessity and sufficiency of lifestate, we compare the verified rates (the total number of

verified traces over the total number of verifiable traces) obtained using each callback control-flow model.

We further measure the verification run time to evaluate the trade-off between the expressiveness of the

models and the feasibility of verification.

Discussion. In Table 3.1, we show the number of verified traces and the verified rates broken down

by sensitive callins and different callback control-flow models—aggregated over all apps. As stated earlier,

the precision improvement with lifestate is significant, essential to get to 83% verified. We also notice that

the lifecycle model is only slightly more precise than the trivial top model (27% versus 22% verified rate).

Even with unsoundnesses discussed later, lifecycle++ is still worse than the lifestate model, with 57% of

traces proven.

Lifestate is also expressive enough to prove most verifiable traces—making manual triage of the

remaining alarms feasible. We manually examined the 14 remaining alarms with the lifestate model, and

we identified two sources of imprecision: (1) an insufficient modeling of the attachment of UI components

(e.g., is a View in the View tree attached to a particular Activity?), resulting in 13 alarms; (2) a single

detail on how Android options are set in the app’s XML, resulting in 1 alarm. The former is not fundamental

to lifestates but a modeling tradeoff where deeper attachment modeling offers diminishing returns on the

verified rate while increasing the complexity of the model and verification times. The latter is an orthogonal

detail for handling Android’s XML processing (that allows the framework to invoke callbacks via reflection).

RQ2: Lifestate Generality.

The bottom line of Table 3.2 is that the lifestate model developed for RQ1 as-is generalizes to provide

precise results (with a verified rate of 86%) when used to verify traces from 121 previously unseen apps.

This result provides evidence that lifestates capture general behaviors of the Android framework. While the

lifecycle++ model verifies 76% of traces, it also misses 27 out of 64 buggy traces (i.e., has a 42% false-
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properties non-crashing traces callback control-flow models

top lifecycle lifestate lifecycle++

sensitive sensitive verifiable verified verified verified verified bad
callin (n) (n) (n) (%) (n) (%) (n) (%) (n) (%) (n)

AlertDialog

dismiss 94 59 54 92 54 92 54 92 58 98 3
show 145 144 125 87 124 86 125 87 127 88 0
AsyncTask

execute 415 415 0 0 415 100 412 99 262 63 0
Fragment

getResources 156 155 89 57 89 57 128 83 116 75 0
getString 220 193 124 64 124 64 134 69 131 68 24
setArguments 456 456 59 13 108 24 437 96 435 95 0
startActivity 91 91 0 0 0 0 12 13 19 21 0

total 1577 1513 451 30 914 60 1302 86 1148 76 27

Table 3.2: The table shows the precision results for the 1577 non-crashing traces that contained a sensitive
callins from a total of 2202 traces that we collected from 121 distinct open source app repositories. We note
that lifestate takes slightly longer than lifecycle; for this reason, lifestate performs slightly worse than life-
cycle for execute. The bad column is 0 for models other than lifecycle++ because of continuous validation.
Note that out of 64 total buggy traces, lifecycle++ missed 27 bugs (i.e., had a 42% false-negative rate).

negative rate).

Methodology. To get a larger corpus, we cloned 121 distinct open source apps repositories from

GitHub that use at least one sensitive callin (the count combines forks and clones). Then, we generated

execution traces using the Android UI Exerciser Monkey [5] that interacts with the app issuing random UI

events (e.g., clicks, touches). We attempted to automatically generate three traces for each app file obtained

by building each app.

Discussion. From Table 3.2, we see that the lifestate verified rate of 86% in this larger experiment is

comparable with the verified rate obtained in RQ1. Moreover, lifestate still improves the verified rate with

respect to lifecycle, which goes from 60% to 86%, showing that the expressivity of lifestate is necessary.

Critically, the lifecycle++ model does not alarm on 42% of the traces representing real defects. That

is, we saw unsoundnesses of the lifecycle++ model manifest in the protocol verification client.

The verified rate for the lifecycle model is higher in this larger corpus (60%) compared to the rate in

RQ1 (27%), and the precision improvement from the top abstraction is more substantial (60% to 30% versus

27% to 22%). This difference is perhaps to be expected when using automatically-generated traces that may

have reduced coverage of app code and bias towards shallower, “less interesting” callbacks associated with
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application initialization instead of user interaction. In these traces, it is possible that UI elements were not

exercised as frequently, which would result in more traces provable solely with the lifecycle specification.

Since coverage is a known issue for the Android UI Exerciser Monkey [9]), it was critical to have some

evidence on deep, manually-exercised traces as in RQ1.

Bug Triage. We further manually triage every remaining alarm from both RQ1 and RQ2. Finding

protocol usage bugs was not necessarily expected: for RQ1, we selected seemingly well-developed, well-

tested apps to challenge verification, and for RQ2, we did not expect automatically generated traces to get

very deep into the app (and thus deep in any protocol).

Yet from the RQ1 triage, we found 2 buggy apps out of 5 total. These apps were Puzzles [19] and

SwiftNotes [27]. Puzzles had two bugs, one related to AlertDialog.show and one for

AlertDialog.dismiss. Swiftnotes has a defect related to AlertDialog.show.

In the RQ2 corpus, we found 7 distinct repositories with a buggy app (out of 121 distinct repositories)

from 64 buggy traces (out of 2202). We were able to reproduce bugs in 4 of the repositories and strongly

suspect the other 3 to also be buggy. Three of the buggy apps invoke a method on Fragment that requires the

Fragment to be attached. This buggy invocation happens within unsafe callbacks. Audiobug [129] invokes

getResources. NextGisLogger [92] and Kistenstapeln [30] invoke getString. We are able to reproduce

the Kistenstapeln bug.

Interestingly, one of the apps that contain a bug is Yamba [50], a tutorial app from a book on learning

Android [51]. We note that the Yamba code appears as a part of three repositories where the code was copied

(we only count these as one bug). The tutorial app calls AlertDialog.dismiss when an AsyncTask is

finishing and hence potentially after the Activity object used in the AlertDialog is not visible anymore.

We found similar defects in several actively maintained open source apps where callbacks in an AsyncTask

object were used either to invoke AlertDialog.show or AlertDialog.dismiss. These apps included

OSM Tracker [55] and Noveldroid [115]. Additionally, we found this bug in a binary library connected with

the PingPlusPlus android app [102]. By examining the output of our verifier, we were able to create a test

to concretely witness defects in 4 of these apps.

RQ3: Model Validation. The plot in Figure 3.7 highlights the necessity of applying model valida-



76

tion: lifecycle++ based on a widely used callback control-flow model does not validate (i.e., an unsoundness

is witnessed) on 58% of 2183 traces (and the validation ran out of memory for 19 out of the total 2202

traces).

Methodology. We first evaluate the need for model validation by applying our approach to lifecycle++

and quantifying its discrepancies with the real Android executions.

Our first experiment validates the lifecycle++model on all the traces we collected (bounding each val-

idation check to 1 hour and 4 GB of memory). We quantify the necessity of model validation collecting for

each trace if the model was valid and the length of the maximum prefix of the trace that the model validates.

Since there are already some known limitations in the lifecycle++model (e.g., components interleaving), we

triage the results to understand if the real cause of failure is a new mistake discovered with the validation

process.

Our second experiment qualitatively evaluates the necessity of model validation to develop sound

lifestate specifications. To create a sound model, we started from the empty model (without rules) and

continuously applied validation to find and correct mistakes. In each iteration: we model the callback

control flow for a specific Android object; we validate the current model on the entire corpus of traces

(limiting each trace to one hour and 4 GB of memory); and when the model is not valid for a trace, we

inspect the validation result and repair the specification. We stop when the model is valid for all the traces.

We then collected the mistakes we found with automatic validation while developing the lifestate model.

We describe such mistakes and discuss how we used validation to discover and fix them.

Discussion: lifecycle++ Validation. From the first bar of the plot in Figure 3.7, we see that the

lifecycle++model validates only 42% of the total traces, while validation fails in the remaining cases (58%).

The bar shows the number of traces that we validated for at least one step, grouping them by validation

status and cause of validation failure. From our manual triage, we identified 4 different broad causes for

unsoundness: i) outside the active lifecycle: the model prohibits the execution of a callback outside the

modeled active state of the Activity; ii) wrong lifecycle automata: the model wrongly prohibits the

execution of an Activity or Fragment lifecycle callback; iii) wrong start of the Fragment lifecycle:

the model prohibits the start of the execution of the Fragment lifecycle; iv) no components interleaving:
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Figure 3.7: Results of the validation of the lifecycle++ model on all the traces. We plot the cumulative
traces grouped by (intervals of) the number of steps validated. The number of traces are further divided into
categories, either indicating that validation succeeded, “no errors,” or the cause of failure of the validation
process.

the model prohibits the interleaved execution of callbacks from different Activity or Fragment objects.

The plot shows that the lifecycle++ model is not valid on 25% of the traces because it does not model the

interleaving of components (e.g., the execution of callbacks from different Activity and Fragment objects

cannot interleave) and the start of the Fragment lifecycle at an arbitrary point in the enclosing Activity

object. With FlowDroid, such limitations are known and have been justified as practical choices to have

feasible flow analyses [11]. But the remaining traces, 33% of the total, cannot be validated due other

reasons including modeling mistakes. In particular, the FlowDroid model imprecisely captures the lifecycle

automata (for both Activity and Fragment) and erroneously confines the execution of some callbacks in

the active state of the lifecycle.

The other bars in the plot of Figure 3.7 show the number of traces we validated for more than 25,

50, and 75 steps, respectively. In the plot, we report the total number of steps in the execution traces

that correspond to a callback or a callin that we either used in the lifestate or the lifecycle++ model, while

we remove all the other messages. From such bars, we see that we usually detect the unsoundness of the

lifecycle++model “early” in the trace (i.e., in the first 25 steps). This result is not surprising since most of the

modeling mistakes we found are related to the interaction with the lifecycle automata and can be witnessed

in the first iteration of the lifecycle. We further discovered that the lifecycle++model mostly validates shorter

execution traces, showing that having sound models for real execution traces is more challenging.
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Discussion: Catching Mistakes During Modeling. We were able to obtain a valid lifestate specifi-

cation for over 99.9% of the traces in our corpus. That is, we were able to understand and model the objects

we selected in all but two traces.

Surprisingly, we identified and fixed several mistakes in our modeling of the Activity and Fragment

lifecycle that are due to undocumented Android behaviors. An example of such behavior is the effect of

Activity.finish and Activity.startActivity on the callback control flow for the onClick callback.

It is unsound to restrict the enabling of onClick callbacks to the active state of the Activity lifecycle (i.e.,

between the execution of the onResume and onPause callbacks). This is the behavior represented with

blue edges in Figure 2.4, what is typically understood from the Android documentation, and captured in the

existing callback control-flow models used for static analysis.

We implemented a model where onClick could be invoked only when its Activity was running

and found this assumption to be invalid on several traces. We inferred that the mistake was due to the wrong

“bounding” of the onClick callbacks in the Activity lifecycle since in all the traces: i) the first callback

that was erroneously disabled in the model was the onClick callback; and ii) the onClick callback was

disabled in the model just after the execution of an onPause callback that appeared before in the trace,

without an onResume callback in between (and hence, outside the active state of the Activity.) It turns

out that both finish and startActivity cause the Activity to pause without preventing the pending

onClick invocations from happening, as represented in the red edges connected to onClick in Figure 2.4.

We validated such behaviors by writing and executing a test application and finding its description in several

Stack Overflow posts [125, 124]. The fix for this issue is to detect the finishing state of the Activity and

to not disable the onClick callback in this case.

3.5 Related Work

Several works [11, 17, 113, 117, 67, 109, 100, 114] propose different callback control-flow models.

Many previous works, like FlowDroid [11] and Hopper [17], directly implement the lifecycle of Android

components. While the main intention of these tools is to implement the lifecycle automata, in practice,

they also encode some of the effects of callins invoked in the app code in an ad-hoc manner. For example,
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FlowDroid determines if and where a callback (e.g., onClick) is registered using a pre-defined list of callin

methods and an analysis of the app call graph. Hopper implements the lifecycle callback control flow

directly in a static analysis algorithm that efficiently explores the interleaving of Android components. In

contrast, our work starts from the observation that reasoning about protocol violations requires capturing,

in a first-class manner, the effects that invoking a callin has on the future execution of callbacks (and vice-

versa).

Callback control-flow graphs [137] are graphs of callbacks generated from an application and a man-

ually written model of the framework. Perez and Le [100] generate callback control-flow graphs with

constraints relating program variables to callback invocations analyzing the Android framework. Such mod-

els can indirectly capture callin effects via the predicates on the program state. With lifestate, we carefully

focus on what is observable at the app-framework interface so that lifestate specifications are agnostic to the

internal implementation details of the framework. DroidStar [109] automatically learns a callback typestate

automaton for an Android object from a developer-specified set of transition labels using both callbacks and

callins symbols. Such automata specifically represent the protocol for a single object and, differently from

lifestate, their labels are not parameterized messages. A callback typestate is thus a coarser abstraction than

lifestate since it cannot express the relationships between different message occurrences that are required to

describe multi-object protocols.

There exist other classes of framework models that represent different and complementary aspects

of the framework than the callback control flow captured by lifestate. For example, Fuchs et al. [47] and

Bastani et al. [13] represent the “heap properties” implicitly imposed by the framework. EdgeMiner [25]

and Scandal [72] model the registration of callbacks. Droidel [18] also captures callback registration by

modeling the reflection calls inside the Android framework code. Similarly, Pasket [68] automatically learns

implementations of framework classes that behave according to particular design patterns.

While framework models have been extensively used to support static and dynamic analysis, not much

attention has been paid to validating that the models soundly capture the semantics of the real framework.

Wang et al. [133] recognized the problem of model unsoundness—measuring unsoundnesses in three dif-

ferent Android framework models. Unsoundnesses were found even using a much weaker notion of model
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validation than we do in this work. A significant advantage of lifestates is that we can validate their correct-

ness with respect to any execution trace, obtained from arbitrary apps, because they speak generically about

the app-framework interface.

There exist several programming languages for asynchronous event-driven systems, such as Tasks [46]

and P [36]. In principle, such languages are general enough to develop event-driven systems such as

Android. The purpose of our formalization is instead to provide a formalization that captures the app-

framework interface.

The protocol verification problem for event-driven applications is related to typestate verification [91,

69, 45], but it is more complex since it requires reasoning about the asynchronous interaction of both call-

backs and callins. Dynamic protocol verification is similar in spirit to dynamic event-race detection [84, 61,

15, 83], which predicts if there is an event data-race from execution traces. However, a lifestate violation

differs from, and is not directly comparable to, an event data-race. A lifestate violation could manifest as

a data race on a framework-internal field, but more commonly it results from encountering an undesirable

run-time state within the framework.

3.6 Conclusion

We considered the problem of specifying event-driven application-programming protocols. The key

insight behind our approach is a careful distillation of what is observable at the interface between the frame-

work and the app. This distillation leads to the abstract notions of permitted messages from the framework to

the app (e.g., enabled callbacks) and prohibited messages into the framework from the app (e.g., disallowed

callins). Lifestate specification then offers the ability to describe the event-driven application-programming

protocol in terms of this interface—capturing both what the app can expect of the framework and what the

app must respect when calling into the framework. We evaluated our approach by implementing a dynamic

lifestate verifier called Verivita and showed that the richness of lifestates are indeed necessary to verify

real-world Android apps as conforming to actual Android protocols.



Chapter 4

Refuting Callback Reachability with Message History Logics

In this chapter, we explain the process of proving an application safe by showing no realizable mes-

sage history can reach the assertion failure. Using the idea of enabledness of callbacks and callin returns,

we can build an application-only static program analysis. The key benefit to this approach is that precise

reasoning about application memory is now possible (as opposed to the dynamic verification in chapter 3).

First, we define the notion of an application-only transition system that records a message history

during execution (subsection 4.1.1). This transition system builds upon the idea from LambdaLife that the

enabled callbacks and callin returns may be predicted from the observable history. However, the key advan-

tage to the application only transition system is that the original structure of an existing application is easier

to preserve for analysis. Executions in this transition system, such as reaching the assertion failure, may be

restricted based on whether they are realizable (e.g., with a user provided specification). The application-

only transition system provides a concrete semantics for a message-history program logic (MHPL) to reason

about realizable message histories by adding the message history ω to the concrete state as ghost state. Us-

ing MHPL, we can abstract message histories backwards from an assertion proving that no failing message

history is realizable (subsection 4.1.2).

In support of MHPL, we also present a streamlined framework modeling language (as compared to

Lifestate). This language is called Callback Control Flow Temporal Logic and is described in detail in

section 4.2. Such streamlining of the framework modeling language allows a clean combination between

abstract message histories and framework models that may be encoded as SMT formula. This encoding

is presented in section 4.3. Finally, we evaluate these techniques by implementing them in a tool named
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Historia and analyze real-world Android applications in section 4.4.

This chapter includes portions of the OOPSLA 2023 paper “Historia, Refuting Callback Reachability

with Message History Logics” [89].

4.1 Message-History Program Logic (MHPL)

In this section, we explain the process of proving an application safe by showing no realizable mes-

sage history can reach the assertion failure. First, we define the notion of an application-only transition

system that records a message history during execution (subsection 4.1.1). Executions in this transition

system, such as reaching the assertion failure, may be restricted based on whether they are realizable (e.g.,

with a user provided specification). The application-only transition system provides a concrete semantics

for a message-history program logic (MHPL) to reason about realizable message histories by adding the

message history ω to the concrete state as ghost state. Using MHPL, we can abstract message histories

backwards from an assertion proving that no failing message history is realizable (subsection 4.1.2).

4.1.1 An Application-Only Transition System with Message Histories

Figure 4.1 defines the syntax and semantics of a program that uses boundary transitions to provide

semantics to an app absent of the hidden framework implementation. Conceptually, all framework code

is merged within a single framework location Fwk (as illustrated in Figure 4.1 from section 2.3). Our

semantics are non-deterministic when the framework chooses the arguments for a callback invocation or

the return value for a callin. Execution simply “gets stuck” on an unrealizable boundary transition from the

framework.

Boundary transitions b append a message to the message history ω capturing all interaction between

the app and framework. A boundary transition is a crossing of the app-framework boundary via a callback in-

vocation Fwk−[cb md(x)]� ℓ from the framework back to the app, a callback return ℓ−[cbret x′md(x)]� Fwk

from the app into the framework, or a callin invocation ℓ−[ci x′md(x)]� ℓ′ from the app into the framework

and back. App transitions t represent app code, for example, consisting of standard operations like reading

and writing to the application heap. A message history ω ::= ε | ω; m is a sequence of messages with ε being



83

the empty sequence. The application-only transition system is parametrized by a set of realizable message

histories Ω representing actions possible under the real framework.

Method names md are a fully qualified and disambiguated name for method procedures. We assume

we can identify a method as being an app (i.e., a callback) method or a framework (i.e., a callin) method

based on the method identifier md (e.g., app methods that override a framework type are callbacks in the

case of Android). The key part of the program state is recording a message history where messages m are

instances of boundary transitions; that is, a callback invocation with bound values cb md(v), a callback return

cbret v′md(v), or a callin invocation ci v′md(v). Values, v, may be compared with equality, created by the

app, or created by the framework.

Callbacks and callins use a sequence of parameters as program variables x and return a value; we

write a sequence with an overline (e.g., x for a sequence of variables). For simplicity, we assume that

variable scoping and shadowing is handled by translation to this language (e.g., via alpha-renaming). A

callback return cbret x′md(x) says that it returns the value in variable x′ — for the corresponding callback

cb md(x); for simplicity, we assume an A-normal form where program expressions are evaluated in internal

app transitions and bound to variable x′ here. For a callin invocation ci x′md(x), variable x′ is the variable

to bind the return value of the invocation.

We see transitions as control-flow edges between two program locations loc. A program location can

be the framework location Fwk or an app location ℓ. The framework location Fwk represents all control

locations inside the framework. A program p is then a set of boundary b or app transitions t for some

unspecified syntax of app transitions. Conceptually, a program p is the control-flow graph for each app

callback augmented with boundary control-flow edges into and back from the framework location Fwk.

A program state σ is a memory µ, at program location loc, which consists of a message history ω

with a boundary stack κ and an app store ρ. A boundary stack κ is a stack ensuring that the message history

consists of matching calls and returns. If we assume that callbacks may not be nested inside of callbacks, this

stack may have at most one activation k. Like app transitions, the specific form of app stores ρ is unspecified,

except we assume it supports looking up the value for an app variable ρ(x) and initializing variables ρ[x 7→v].

An app state ς is then a pair of an app location ℓ and an app store ρ.
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boundary transitions b ::= Fwk−[cb md(x)]� ℓ | ℓ−[cbret x′md(x)]� Fwk | ℓ−[ci x′md(x)]� ℓ′

app transitions t message histories ω ::= ε | ω; m realizable message histories Ω

method names md messages m ::= cb md(v) | cbret v′md(v) | ci v′md(v) values v

variables x program locations loc ::= Fwk | ℓ app locations ℓ

programs p ::= ◦ | p, b | p, t program states σ ::= loc : µ

memories µ ::= ω · κ · ρ app stores ρ

boundary stacks κ ::= ◦ | κ; k boundary activations k ::= cb md(v) app states ς ::= ℓ : ρ

⟨σ, b⟩ ⇓Ω σ′ σ→Ωp σ′

c-callback-invoke

ω; cb md(v) ∈ Ω

⟨Fwk : ω · κ · ρ,Fwk−[cb md(x)]� ℓ⟩ ⇓Ω ℓ : ω; cb md(v) · κ; cb md(v) · ρ[x 7→ v]

c-callback-return

m = cbret ρ(x′) md(v) v = ρ(x) ω; m ∈ Ω

⟨ℓ : ω · κ; cb md(v) · ρ, ℓ−[cbret x′md(x)]� Fwk⟩ ⇓Ω Fwk : ω; m · κ · ρ

c-callin-invoke

v = ρ(x) m = ci v′md(v) ω; m ∈ Ω

⟨ℓ : ω · κ · ρ, ℓ−[ci x′md(x)]� ℓ′⟩ ⇓Ω ℓ′ : ω; m · κ · ρ[x′ 7→ v′]

c-app-step

⟨ℓ : ρ, t⟩ ⇓ ℓ′ : ρ′ t ∈ p ℓ = pre(t) ℓ′ = post(t)

ℓ : ω · κ · ρ→Ωp ℓ′ : ω · κ · ρ′

c-boundary-step

⟨σ, b⟩ ⇓Ω σ′ b ∈ p

σ→Ωp σ′

initial program state σinit = Fwk : ε · ◦ · ρinit initial app store ρinit

Figure 4.1: An application-only transition system with boundary transitions and message histories. The

message history ω component of the program state records the execution of boundary transitions b between

the app and framework. We use the judgment σ →Ωp σ′ to represent a single step over either an app or

boundary transition in the application. The transition system is parametrized by a set of realizable message

histories ω ∈ Ω.
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Boundary transitions b are particularly interesting as they capture the non-deterministic or unob-

served behavior of the framework and record the action in the “ghost state” ω for the message history. The

boundary transition judgment form ⟨σ, b⟩ ⇓Ω σ′ says, “In program state σ, executing the boundary transi-

tion b results in an updated program state σ′ and is realizable under realizable message histories Ω.” This

judgment form captures the realizable executions of boundary transitions. To execute a callback invocation

transition Fwk−[cb md(x)]� ℓ via rule c-callback-invoke, the program state is at the framework location Fwk,

values v are chosen for the callback parameters x non-deterministically (conceptually by the framework)

and initialized in the app store ρ[x 7→ v], and the callback activation cb md(v) is pushed on the boundary

stack κ. Then to record this boundary transition execution, this callback message cb md(v) is appended onto

the current message history ω. We want to capture that depending on the current message history ω, this

callback invocation transition may not be realizable. This realizability of message histories is captured by

checking if the new message history is realizable with ω; cb md(v) ∈ Ω.

Executing a callback return transition ℓ−[cbret x′md(x)]� Fwk via rule c-callback-return is then the

expected symmetric operation. The return value is read out of the app store ρ(x′), the callback activation

cb md(v) is popped off the boundary stack, and control goes into the framework location Fwk. The premise

v = ρ(x) enforces that argument variables are not modified by the callback which simplifies the formalism.

The callback return message cbret ρ(x′) md(v) is similarly appended onto the current message history ω to

record the execution of the callback return transition — and checked for realizability. Note that to connect

the callback invocation with its return, the callback return message includes the method name md and actual

arguments v from the callback activation.

The callin invocation transition ℓ−[ci x′md(x)]� ℓ′ via rule c-callin-invoke is symmetric to callback

invocation and return together, that is, the arguments for the callin v are read from the app store, and the

callin return value from the framework v′ is chosen non-deterministically (conceptually by the framework)

and then bound to variable x′. Then, the callin message ci v′md(v) is appended onto the current message

history ω and checked for realizability. It should be noted that c-callback-invoke, c-callback-return, and

c-callin-invoke together capture that the framework cannot modify the app store ρ except through invoking

callback methods. This formalizes one aspect of the so-called separate compilation assumption [1], which
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considers the consequences of the assumption that framework is developed separately and compiled in the

absence of the app. As a consequence of these semantics checking realizability at each boundary transition,

every prefix of a realizable message history must also be realizable.

The application-only transition system is then given by the transition relation judgment formσ→Ωp σ′

that says, “Program state σ steps to σ′ in program p by either a boundary transition b or app transition t

under realizable message historiesΩ.” Straightforwardly, the c-app-step and c-boundary-step rules simply state

that we can either take a step with an app transition t or a boundary transition b in the program p (depending

on the program location). The transition semantics of app transitions are left unspecified ⟨ς, t⟩ ⇓ ς′. We

assume that app transitions themselves do not read or write framework state directly, as the app store ρ is

separate from the framework state. And finally, concrete executions are given by the reflexive-transitive

closure of this single-step transition relation from an initial program state σinit. We write σ →∗Ωp σ′ for the

reflexive-transitive closure of σ→Ωp σ′.

4.1.2 Refuting Callback Reachability with Message-History Program Logic

The ultimate aim of MHPL is to prove statically that a program assertion cannot fail. We start with

the error condition, σ̂, an abstract state just before the assertion such that the assertion may fail. For exam-

ple, ℓ14 {ciexn t.execute()↠ okhist · this 7→ a ∗ a.remover 7→ t} captures message histories where the

callin execute emits an exception next and where the remover field and this variable point to objects

t and a. We refute the reachability of the error condition with the judgment form ⊢Sp σ̂ unreach. This

judgment form is read as, “No concrete program state satisfying the abstract state σ̂ is reachable in program

p with realizable message history specification S .” S is provided as input and represented by CBCFTL and

is defined in section 4.2, to abstract the set of reachable message histories Ω in the concrete semantics. We

use the judgment ω |= S to say that a message history ω is captured by a specification S and note the set of

message histories in a specification as ΩS (i.e., the concretization of a specification S is the set of message

histories ΩS ). Since the specification is an input to our algorithm, we assume that S is a sound abstraction

of realizable message histories (i.e., ΩS ⊆ Ω for the set of realizable message histories Ω in the concrete

semantics).
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Our proof technique works in a goal-directed manner: we over-approximate the set of the states

that may reach the given error condition σ̂ with a program-state invariant, Σ̂. If the initial program state

σinit : Fwk : ε · ◦ · ρinit is excluded from the program state-invariant, Σ̂, then the location of σ̂ cannot be

reached with any concrete state satisfying abstract state error condition σ̂. For some abstract state σ̂, the

excludes-initial judgment, ⊢S σ̂ excludesinit, holds only if the concretization of σ̂ must not contain the

initial state σinit. While an abstract state σ̂ may be excludes-initial in any of its components (e.g., the abstract

app store), the particularly interesting component here is its abstract message history ω̂. Thus, in subsequent

sections, we focus in on the excludes-initial judgment on abstract message histories. Excludes-initial for

message histories, ⊢S ω̂ excludesinit, holds if ε is not in the concretization of ω̂.

4.1.2.1 An Abstract Semantics with Message Histories

In Figure 4.2, we define MHPL, which abstracts the application-only transition system from sub-

section 4.1.1, to derive refutations with respect to message histories. To abstract messages m̂, we replace

concrete values with symbolic variables x̂. Symbolic variables are existentially quantified across each part

of the abstract program state with an assignment, θ. That is, a concrete state σ satisfies the concretization

relation of an abstract state, σ̂ (i.e., σ |= σ̂) if a θ exists such that each part of σ satisfies the concretization

relation with each part of σ̂ (e.g., ω · θ |=S ω̂).

An abstract message history ω̂ captures the set of message histories reaching a given error condition

σ̂ under the realizable message history specification S . An abstract message history can be okhist, which

corresponds to all realizable message histories under S . Note that since we only care about realizable mes-

sage histories, we do not include a ⊤ abstract message history corresponding to all message histories. Since

our logic explores backwards, it adds constraints on future boundary transitions to the abstract message

history ω̂ as they are encountered. The key is to see this constraint as an ordered linear implication on the

right m̂ ↠ ω̂, which informally says, “For all messages satisfying m̂, appending that message to the current

message history implies that the new message history satisfies ω̂.” In the middle part of Figure 4.2, we give

a precise concretization relation between a message history with an assignment ω ·θ and an abstract message

history: ω · θ |=S ω̂. The θ is a mapping from symbolic variables in the abstract state to concrete values and



88

abstract messages m̂ ::= cb md(x̂) | ci x̂′ md(x̂) | cbret x̂′ md(x̂) symbolic variables x̂

assignments θ ::= ◦ | θ[x̂ 7→ v] abstract message histories ω̂ ::= okhist | m̂↠ ω̂

realizable message histories specs S abstract app stores ρ̂ ::= ⊤ | ρ̂1 ∗ ρ̂2 | x 7→ x̂ | · · · | ⊥ | ρ̂1 ∨ ρ̂2

abstract app states ς̂ ::= ℓ : ρ̂ abstract memories µ̂ ::= ω̂ · κ̂ · ρ̂ | ⊥ | µ̂1 ∨ µ̂2

abstract program states σ̂ ::= loc : µ̂ abstract boundary stacks κ̂ ::= ⊤ | κ̂1 • cb md(x̂)

abstract program-state invariants Σ̂ ::= ◦ | Σ̂, σ̂

ω · θ |=S ω̂

ω · θ |=S okhist iff ω |= S ω · θ |=S m̂↠ ω̂ iff m · θ |= m̂ implies ω; m · θ |=S ω̂ and ω; m |= S

⊢ {σ̂
′
} b {σ̂}

a-callback-invoke

⊢ {Fwk : cb md(x̂)↠ ω̂ · κ̂ · ρ̂} Fwk−[cb md(x)]� ℓ {ℓ : ω̂ · κ̂ • cb md(x̂) · ρ̂ ∗ ∗ x 7→ x̂}

a-callback-return
ρ̂ = ρ̂

′
∗ x′ 7→ x̂′ ∗ ∗ x 7→ x̂

⊢ {ℓ : cbret x̂′ md(x̂)↠ ω̂ · κ̂ • cb md(x̂) · ρ̂} ℓ−[cbret x′ md(x)]� Fwk {Fwk : ω̂ · κ̂ · ρ̂}

a-callin-invoke
ρ̂ = ρ̂

′
∗ ∗ x 7→ x̂

⊢ {ℓ : ci x̂′ md(x̂)↠ ω̂ · κ̂ · ρ̂} ℓ−[ci x′ md(x)]� ℓ′ {ℓ′ : ω̂ · κ̂ · ρ̂ ∗ x′ 7→ x̂′}

Σ̂ ⊢S b

a-boundary-step
Σ̂(post(b)) ⊢S σ̂ ⊢ {σ̂

′
} b {σ̂} σ̂

′
⊢S Σ̂(pre(b))

Σ̂ ⊢S b

Σ̂ ⊢ t

a-app-step
app(̂Σ(post(t))) ⊢ ς̂ ⊢ {̂ς

′
} t {̂ς} ς̂

′
⊢ app(̂Σ(pre(t)))

Σ̂ ⊢ t

Σ̂ ⊢S
p σ̂ ⊢S

p σ̂ unreach

a-inductive
σ̂ ⊢S Σ̂(loc(σ̂)) Σ̂ ⊢S b for all b ∈ p Σ̂ ⊢ t for all t ∈ p

Σ̂ ⊢S
p σ̂

a-refute
Σ̂ ⊢S

p σ̂ ⊢S Σ̂(Fwk) excludesinit

⊢S
p σ̂ unreach

Figure 4.2: Refuting callback reachability with a MHPL. We abstract the application-only transition system
with Hoare triples over app and boundary transitions and an abstract program state invariant Σ̂. The location
of an abstract state is noted with loc(σ̂) and looking up the state at a location in the invariant is noted with
Σ̂(loc). Executing backwards, an abstract message history ω̂ becomes conditional in messages observed in
the future execution. An abstract realizable message history S is parameter and is the abstract analogue of
the concrete set of realizable message histories Ω.
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is used to ensure consistency between individual messages and other parts of the abstract state.

The rest of an abstract program state is straightforward. We do not care specifically about the form

of abstract app stores, except that like concrete app stores, we need a way to look up a (symbolic) value for

a variable and to initialize variables. To do that, we use intuitionistic separation logic [64, 112] to indicate

arbitrary store ⊤, separating-conjunction of two stores ρ̂1 ∗ ρ̂2, a singleton points-to or cell for program

variables x 7→ x̂, an infeasible store ⊥, or a disjunction of stores ρ̂1 ∨ ρ̂2, which we usually consider in

disjunctive normal form. An abstract app state ς̂ ::= ℓ : ρ̂ | · · · is then an abstract app store and location

ℓ. An abstract memory µ̂ ::= ω̂ · κ̂ · ρ̂ | · · · is then a product of an abstract message history ω̂, an abstract

boundary stack κ̂, and an abstract store ρ̂ — or a disjunction of such products. An abstract program state

σ̂ ::= loc : µ̂ is simply an abstract memory µ̂ at a program location loc. For abstract boundary stacks κ̂, we

consider arbitrary boundary stacks ⊤, or appending a boundary activation κ̂ • cb md(x̂). Finally, we consider

abstract program-state invariants Σ̂ to be a set of abstract program states σ̂, which we also treat as a map

from locations loc to the abstract state σ̂ at that location (i.e., Σ̂(loc) = σ̂ iff σ̂ = loc : µ̂ and σ̂ ∈ Σ̂).

We describe the abstract semantics of boundary transitions b as Hoare triples ⊢ {σ̂′} b {σ̂}, except

that we are interested in backwards over-approximating triples instead of forwards. That is, we read the

judgment as, “If there is an execution of the boundary transition b to a post-state satisfying σ̂, the pre-state

of that execution satisfies σ̂′” (Lemma 1).

Lemma 1 (hoare triple soundness). If ⊢ {σ̂′} b {σ̂} and ⟨σ′, b⟩ ⇓Ω σ such that σ |=S σ̂ and Ω ⊆ ΩS , then

σ′ |=S σ̂
′.

The abstract semantics rules for boundary transitions b follow closely their concrete counterparts (as-

suming a structural rule for disjunction of memories µ̂). The a-callback-invoke rule captures computing the

pre-condition of the callback invocation transition Fwk−[cb md(x)]� ℓ and shows moving from an assertion

on the abstract boundary stack κ̂ • cb md(x̂) to a hypothetical next message in the abstract message history

cb md(x̂) ↠ ω̂. In detail, it first asserts that the post-app memory has bindings for the callback parameters

ρ̂ ∗ ∗ x 7→ x̂ and has the corresponding callback activation on top of the boundary stack κ̂ • cb md(x̂). Then,

we drop the parameter bindings and pop the callback activation. Finally, we update the abstract message
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history with the abstract message corresponding to the callback invocation, cb md(x̂) ↠ ω̂. As an example

from section 2.3, the abstract state ℓ14 {ciexn t.execute()↠ okhist · this 7→ a ∗ a.remover 7→ t} just af-

ter the invocation of the call callback will generate an abstract pre-state of

Fwk1 { cb a.onClick()↠ ciexn t.execute()↠ okhist · a.remover 7→ t} capturing that onClick hap-

pening next may reach the error.

Continuing to mirror the abstract semantics, the a-callback-return rule pushes a hypothetical callback

message on the boundary stack corresponding to the callback that would have just returned in the concrete

execution. Similar to abstract callback invoke (a-callback-invoke), abstract callback return (a-callback-return)

and abstract callin invoke (a-callin-invoke) add hypotheticals to the abstract message history. The main dif-

ference is how each updates the abstract app store. For a-callback-return, the return value and its relationship

to other symbolic variables is unknown, therefore we ensure that the separation logic domain has material-

ized return values and arguments for the callback via ρ̂′ ∗ x′ 7→ x̂′ ∗∗ x 7→ x̂. The overview example does not

show a callback return for brevity, but an example would be the state just after the onClick in Figure 2.8

(note that we usually elide the ⊤ abstract message stack but include it here for the next step):

Fwk1 {

cb a.onClick()↠ ciexn t.execute()↠ okhist abstract message history

· ⊤ abstract boundary stack

· a.remover 7→ t abstract app stores

}

From this state, a transfer over the return of the callback onClick produces an abstract pre-state

representing the return happening next. There are three details elided in the overview: (1) The returns of

callbacks are elided in order to keep the abstract state reasonable for the explanation (later, in section 4.3

it can be seen that messages that don’t appear in the CBCFTL framework model may be elided soundly).

(2) Only one aliasing case for the RemoverActivity is shown. Upon a jump back into the return of a
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callback such as onClick, each aliasing case with the return value and receiver must be considered for

soundness. The easiest way to represent the aliasing possibilities is to create a fresh variable for any return

value and the receiver object without equality constraints. In the abstract state above, we represent this fresh

variable with a2. (3) The call strings are not shown. Call strings are used to connect the arguments of a

callback with the return value and to improve precision in the analysis (the latter improvement in precision

is an existing technique [17]). The backwards transfer over the return results in an abstract pre-state that

prepends a onClick to the abstract message history, pushes a onClick on the call string, and materializes

the corresponding this variable.

ℓ17{

cbret a2.onClick()↠ cb a.onClick()↠ ciexn t.execute()↠ okhist abstract message history

· ⊤ • cbret a2.onClick() abstract boundary stack

· a.remover 7→ t ∗ this 7→ a2 abstract app stores

}

Finally, a-callin-invoke is used to handle callins. In our example, the previous line in the applica-

tion execution is Line 17this.okButton.setEnabled(false);. If a callin is assigned to a value, this

judgment removes the program variable from the post app store. The callin setEnabled is void, so no

program variable is removed. Next, fresh symbolic variables are added to the pre-state corresponding to the

memory locations that were read by the callin. Since there is no okButton field, in the abstract state, it

must be represented by the unconstrained memory. Therefore, the first step is to materialize the okButton

field (i.e. add a a2.okButton 7→ bok constraint on the memory). As a last step, a-callin-invoke prepends the

corresponding abstract message resulting in the following pre-state just before Line 17.
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ℓ16{

ci bok.setEnabled(false)↠ cbret a2.onClick()↠ cb a.onClick()↠ ciexn t.execute()↠ okhist

· ⊤ • cbret a2.onClick()

· a.remover 7→ t ∗ this 7→ a2 ∗ a2.okButton 7→ bok

}

We write app(σ̂) = ς̂ for the projection of an abstract program state σ̂ to an abstract app state ς̂ that

drops the abstract message history ω̂ and abstract boundary stack κ̂ components. The app transitions are

checked for being inductive in the analogous way with the a-app-step rule defining the judgment form Σ̂ ⊢ t,

which similarly depends on an abstract semantics for app transitions ⊢ {̂ς′} t {̂ς} and an entailment judgment

for abstract app states ς̂ ⊢ ς̂′.

We then check that the abstract program-state invariants Σ̂ are inductive for executing backwards a

given boundary transition b with the judgment form Σ̂ ⊢S b. This judgment says, “In abstract program-state

invariants Σ̂, executing boundary transition b backwards is inductive when constrained by realizable message

histories defined by specification S .” The a-boundary-step defines this judgment and captures the backwards

over-approximation. Specifically, it depends on an entailment judgment σ̂ ⊢S σ̂
′ that is parametrized by

the realizable message histories specification S (i.e., it should satisfy the following soundness condition: if

σ̂ ⊢S σ̂
′ and σ |=S σ̂, then σ |=S σ̂

′). To get the post- and pre-locations of a boundary transition b, we

write post(b) and pre(b), respectively. Then, the rule chooses some σ̂ that over-approximates Σ̂(post(b)) —

i.e., Σ̂(post(b)) ⊢S σ̂, applies the abstract semantics for b — i.e., ⊢ {σ̂′} b {σ̂}, and checks that Σ̂(pre(b))

over-approximates σ̂′ — i.e., σ̂′ ⊢S Σ̂(pre(b)). This rule is the backwards over-approximating version of

the usual Hoare rule of consequence. A similar judgment may be written for an app transition Σ̂ ⊢ t (e.g.,

as in Thresher [16]). For clarity, the semantics is written with explicitly materialized points-to for message

arguments and return values (e.g., ∗ x 7→ x̂). If such values do not otherwise constrain the abstract state,

they may be summarized into the top store ⊤ without precision loss.
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Lemma 2 (boundary-step soundness). If Σ̂ ⊢S b and ⟨σ′, b⟩ ⇓Ω σ such that σ |=S Σ̂(post(b)) and Ω ⊆ ΩS ,

then σ′ |=S Σ̂(pre(b)).

To describe an inductive program invariant, we define the may-witness judgment form Σ̂ ⊢Sp σ̂ that

says, “Abstract program-state invariants Σ̂ is inductive executing backwards from abstract program state σ̂

— at location loc(σ̂) — in program p.” The a-inductive rule that defines this judgment form simply checks

that each boundary transition b and each app transition t in program p are inductive.

Lemma 3 (inductive soundness). If Σ̂ ⊢Sp σ̂ and σ′ →∗Ωp σ such that σ |=S σ̂ and Ω ⊆ ΩS , then σ′ |=S

Σ̂(loc(σ′)).

Finally, to derive a refutation of reachability ⊢Sp σ̂ unreach, the a-refute rule says that we derive an

inductive program invariant Σ̂ from σ̂ — i.e., Σ̂ ⊢Sp σ̂, and we derive that the program invariant at the entry

location Fwk excludes the initial (concrete) program state — i.e., ⊢S Σ̂(Fwk) excludesinit.

Theorem 4 (refute soundness). If ⊢Sp σ̂ unreach and σ′ →∗Ωp σ such that σ |=S σ̂ and Ω ⊆ ΩS , then

σ′ , σinit .

4.1.2.2 Abstract Interpretation with Message Histories

While we have described a checking system with the may-witness judgment form Σ̂ ⊢Sp σ̂, we can

consider a direct approach to computing an inductive program invariant Σ̂ from an error condition σ̂ via a

backwards abstract interpretation. The invariant map Σ̂ is initialized with the error condition just before the

assertion (okhist · ⊤ · ρ̂ where ρ̂ negates the assertion condition) and ⊥ at other locations. We then proceed

with a standard worklist algorithm. When the invariant map is updated at a location, all transitions to that

location are added to the worklist. Each transition in the worklist and abstract state at the post-location are

processed by a transfer function (based on the Hoare triples defined above) producing a pre-condition that

is joined into the invariant map. Pre-conditions at a location are eagerly merged with existing disjuncts both

to avoid an updated state at a location and for efficiency. Merging is done automatically via the entailment

check, ω̂ · κ̂ · ρ̂ ⊢S ω̂
′
· κ̂
′
· ρ̂
′. If a new pre-condition cannot be merged with an existing disjunct, it is

added to the existing disjunctions. At the framework location Fwk, all callback return boundary transitions,
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ℓ−[cbret x′md(x)]� Fwk, are added to the worklist. We alarm if we cannot prove that the invariant at Fwk

excludes initial. If a fixed point is reached that excludes the initial state, ⊢S ω̂ · κ̂ · ρ̂ excludesinit, then we

have refuted the reachability of the assertion failure. Intuitively, we have now captured the abstract state at

all locations that may step to the assertion failure, and excludes initial is proving that no message history

can go from the initial state of the program to the assertion and fail.

Excludes-initial, ⊢S ω̂ excludesinit, and entailment of abstract message histories, ω̂ ⊢S ω̂ are auto-

mated via SMT (and described in section 4.3). Existing techniques can combine the message history SMT

encoding with other parts of the abstract state [103].

4.2 Callback Control-Flow Temporal Logic (CBCFTL)

In this section, we describe the Callback Control-Flow Temporal Logic (CBCFTL) that we use to ex-

press the specification S of the realizable message histories. We design CBCFTL as a compromise between

the expressiveness required to specify callback control flow and the need of the abstract interpretation to

automate judging excludes-initial (⊢S ω̂ excludesinit) and entailment (ω̂ ⊢S ω̂
′), which are parametric in the

specification language used to express S .

As we observe in section 2.3, a specification of realizable message histories must be able to ex-

press: (1) quantification over message values (e.g., the subscription object b from History Implication 1);

and (2) constraints on what messages must have or have not happened in the past (e.g., makeButton,

setEnabled, or onCreate). These requirements suggest CBCFTL should be a linear temporal logic

(LTL) [85] interpreted over finite sequences (i.e., message histories) [52], with first-order quantification

of message arguments, and past-time temporal operators [80]. In principle, the excludes-inital and entail-

ment judgment could be reduced to checking the satisfiability of first-order LTL (FO-LTL) formulas, but it

is undecidable [119] and is limited in ready-to-use implementations.

Instead, we restrict the CBCFTL syntax such that reasoning about message histories leading to a target

message is decidable (i.e., with history implications consisting of a target message and temporal formula).

In section 4.3, we show that such a problem can be in turn reduced to the satisfiability of the fragment

of temporal formulas of CBCFTL. We show how to use such a subproblem to decide the excludes-initial
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(⊢S ω̂ excludesinit) judgment and to obtain a semi-algorithm for judging entailment (ω̂ ⊢S ω̂
′). The syntactic

restriction of CBCFTL carefully controls the use of features of the logic, such as negation and quantifier

alternation, that complicate automated reasoning. In particular, the restrictions are such that we can encode

a temporal formula ω̃ of CBCFTL in an equisatisfiable formula in the Extended Effectively Propositional

(Extended EPR) logic [73, 96]. This section first gives the syntax and semantics of CBCFTL and then

explains the encoding of the temporal formula fragment in Extended EPR.
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4.2.1 A Temporal Logic for Expressing Realizable Message Histories

CBCFTL specification S ::= true | S 1 ∧ S 2 | s history implication s ::= m̂� ω̃

temporal formula ω̃ ::= O m̃ | HN m̃ | m̃2 NS m̃1 | ∃x̂.ω̃ | ∀x̂.ω̃ | ω̃1 ∧ ω̃2 | ω̃1 ∨ ω̃2

| x̂1 = x̂2 | x̂1 , x̂2 | true | false

symbolic messages m̃ ::= m̂ | ∃x̂.m̃

ω |= S ω |= m̂� ω̃ iff m · θ |= m̂ such that ω[i] = m implies ω · θ · i − 1 |= ω̃

ω · θ · i |= ω̃ ω · θ · i |= m̃2 NS m̃1 iff ∃ j ∈ [0, i]. ω · θ · j |= m̃1 and ∀k ∈ ( j, i]. ω · θ · k ̸|= m̃2

ω · θ · i |= O m̃ iff ∃ j ∈ [0, i]. ω · θ · j |= m̃ ω · θ · i |= HN m̃ iff ∀k ∈ [0, i]. ω · θ · k ̸|= m̃

ω · θ · i |= m̃

ω · θ · i |= m̂ iff m · θ |= m̂ and ω[i] = m ω · θ · i |= ∃x̂.m̃ iff ∃v. ω · θ[x̂ 7→ v] · i |= m̃

Figure 4.3: Syntax and semantics of callback control-flow temporal logic (CBCFTL). CBCFTL is a subset

of first-order linear temporal logic (FO-LTL) that describes a set of realizable message histories. A CBCFTL

specification S is a conjunction of history implications m̂ � ω̃. Temporal formulas ω̃ include restricted

versions of standard past-time temporal operators that apply only to individual symbolic messages m̃ with

limited negation O (Once), HN (Historically Not), and NS (Not Since). While not shown in the syntax here,

the subformula ω̃ of universal quantification ∀x̂.ω̃ is further restricted to HN m̃ or the propositional forms to

limit quantifier alternation.

Figure 4.3 describes the CBCFTL syntax and semantics. A CBCFTL specification S is a conjunction

of history implications s ::= m̂ � ω̃. Each history implication targets an abstract message, m̂, controlled

by the framework (e.g., invocation of the call callback) and a temporal formula, ω̃, that must hold before

the framework outputs that message. While not captured in the syntax, history implications s are closed

formulas where the variables of the abstract message in the antecedent are implicitly universally quantified,
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and we assume that the temporal formula ω̃ in the consequent is quantified so that its free variables are a

subset of the variables of m̂ (i.e., fv(ω̃) ⊆ fv(m̂) where fv(·) yields the set of free variables of a formula).

section 4.3 will explain how abstract message histories combine with history implications leaving only

temporal formula, which motivates this design.

Temporal formulas ω̃ include restricted versions of standard past-time temporal operators (O m̃ for

Once, HN m̃ for Historically Not, and m̃2 NS m̃1 for Not Since), equality and disequality between variables,

and positive Boolean combinations. In particular, the temporal operators apply only to individual symbolic

messages m̃ and do not allow for explicit negations (although some negations are implicit in the history

implication� and in the temporal operators HN and NS). Symbolic messages m̃ are essentially abstract

messages m̂, except we allow for a local existential quantification of variables ∃x̂.m̃, which is convenient

for “don’t care” arguments (e.g., we can place a _ where a variable would go in a message). The structure

of CBCFTL specifications S also limits the nesting of the temporal operators: past temporal operators

are always nested in a future temporal operator (�), and the only future temporal operator is history

implication m̂ � ω̃. While not explicitly shown in the syntax, we also restrict quantifiers such that ∀x̂.ω̃

may only contain conjunctions and disjunctions of HN m̃ and equality/disequality of symbolic variables.

The most interesting part of temporal formulas ω̃ are the temporal operators: HN m̃ states that m̃ has

historically not (i.e., has never) occurred in the past, O m̃ that m̃ occurred at least once in the past, and

m̃2 NS m̃1 that m̃2 has not occurred since m̃1 occurred. The operators restrict standard past-time temporal

operators so that for a given message m̃, we either positively look back for the time m̃ occurs or negatively

rule out m̃ at each time in the past. Thus, the O m̃ operator is directly the Once operator from past-time LTL,

while HN m̃ and m̃2 NS m̃1 are syntactic restrictions for the appropriate negations within Historically and

Since (i.e., HN m̃ def
= H ¬m̃ and m̃2 NS m̃1

def
= ¬m̃2 S m̃1 in past-time LTL). Additionally, we allow standard

boolean combinations of operators as well as equality of variables.

A model of a specification S is a (concrete) message history ω, which is a finite sequence of messages

m. Message histories ω are zero-indexed by positions i ∈ [0, len(ω)), and we write ω[i] for the message at

position i in ω and len(ω) for the length of ω. A message history satisfies a history implication ω |= m̂� ω̃

iff for all positions i in the message history (i.e., i ∈ [0, len(ω)]), if a concrete message m with an assignment
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for its variables θ models m̂ and is ω[i], then the prefix of ω up to i − 1 must satisfy the temporal formula

ω̃ (under the assignment θ). A model for a temporal formula ω̃ is a tuple ω · θ · i of a message history, an

assignment, and a position in ω. The past-time temporal operators apply to the prefix of the message history

ω up to (and including) position i, and the relation is undefined for any position outside the valid range of

indices of the message history ω (e.g., −1).

The temporal operators captures the looking back “positively” for a message (e.g., for O m̃, there must

exist a j ∈ [0, i] where the message at j models m̃ — i.e., ω · θ · j |= m̃) or “negatively” when ruling out one

(i.e., for HN m̃, all the messages at k ∈ [0, i] must not model m̃). The temporal operator m̃2 NS m̃1 is a more

general version combining “positively” looking for m̃1 (i.e., ∃ j ∈ [0, i]. ω · θ · j |= m̃1) while “negatively”

ruling out m̃2 (i.e., ∀k ∈ ( j, i]. ω · θ · k ̸|= m̃2). All three temporal formula reference the judgment ω · i ·m |= m̃

to match a symbolic message to a position i in a message history ω under a variable assignment θ.

4.2.2 Encoding Temporal Formula Into Extended EPR

Here, we describe how we encode temporal formula into Extended EPR [73, 96], a decidable fragment

of first-order logic. In brief, effectively propositional (EPR) is a first-order logic fragment where closed

formulas converted into prenex normal form have the quantifier prefix ∃∀ without any function symbols.

Extended EPR adds function symbols as long as the quantifier alternation graph does not contain cycles.

The quantifier alternation graph is a directed graph where the nodes are sorts and the edges are defined by

functions (or ∀x.∃y. . . .) from the sort of the argument to the sort of the value.

To encode a temporal formula ω̃, we model message histories ω with uninterpreted functions over

uninterpreted sorts. We use an uninterpreted function hist : HistIdx → Msg from history indices HistIdx

to message instances Msg. To capture message instances, we use a function msgname : Msg → MsgName

from message instances to message names MsgName (i.e., representing the message kind, like cb, and the

method name) and a function msgargs : Msg → ArgIdx → Val from messages instances to arguments

indices ArgIdx to values Val (i.e., representing the arguments of the message instance).

Then to describe ordering constraints on messages in a message history, we use a set of ordering

axioms (referred to as ψax). We use an uninterpreted function ≤: HistIdx → HistIdx → Bool and ax-
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iomatize a total ordering on HistIdx (Similar to Paxos Made EPR [96]), as well as an axiom for zero (i.e.,

∀idx ∈ HistIdx. 0 ≤ idx where 0 is a variable). Argument indices ArgIdx are finite and bounded to the

largest arity found in the framework methods. Message names MsgName are also finite and bounded by the

framework interface definition. As such, we precisely represent the needed ordering constraints on messages

in message histories.

4.3 Combining Abstract Message Histories with Callback Control-Flow

MHPL from subsection 4.1.2 depends on two judgments, excludes initial ⊢S ω̂ excludesinit and

entailment ω̂ ⊢S ω̂
′. Excludes initial says that abstract message history, ω̂, excludes the initial, empty

message history. Message history ω̂ entailing a second message history ω̂
′ says that all concrete traces

abstracted by ω̂ are also abstracted by ω̂
′. Both of these judgments depend on the CBCFTL specification

from section 4.2 for a definition of realizable message histories. For each abstract message history, we

combine with the CBCFTL specification in order to avoid reasoning about the specification separately. In

this section, we first show how to combine an abstract message history, ω̂, with a specification, S , resulting

in a single temporal formula, ω̃ (as we describe in subsection 2.3.3). Second, we show how to compute

excludes initial and entailment for temporal formula. Finally, we prove that defining these judgments in this

way is sound.

The high-level intuition is that given an abstract message history ω̂, we instantiate the specification of

realizable message histories S with ω̂ into a single temporal formula ω̃. Then, with this temporal formula

ω̃, we can implement these judgments on abstract message histories via queries to an off-the-shelf SMT

solver (using the encoding described at the end of section 4.2). In Figure 4.4, we describe the judgment

form ⊢S ω̂ ≡ ω̃ that captures this combining of ω̂ and S into a single temporal formula ω̃.

As we see in Figure 4.4, the combining (or equivalent-to-a-temporal-formula) judgment form ⊢S ω̂ ≡

ω̃ is syntax-directed on the abstract message history ω̂. Under the assumption of S , the abstract message

history okhist is equivalent to the temporal formula true (rule temporal-okhist). For the ordered-implication

abstract message history m̂ ↠ ω̂, intuitively, we want to hypothesize m̂1 to derive any constraints from

instantiating from S and to derive any constraints from “quotienting” the constraints from ω̂2 to “remove



100

m̂1 from the end”. Instantiating and quotienting are captured by two helper judgments. The instantiate

judgment form S , m̂ ⊢ ω̃ says, “In specification S , hypothesizing abstract message m̂, temporal formula ω̃

describe realizable message histories.” And the quotient judgment form ⊢ ω̃ ≡ ω̃′ # m̂ says, “Temporal

formula ω̃ is equivalent to temporal formula ω̃′ with abstract message m̂ appended.” We can now read the

key temporal-hypmsg rule: if hypothesizing m̂1 in S yields temporal formula ω̃′1, abstract message history ω̂2

is equivalent to temporal formula ω̃2, and ω̃2 is equivalent to temporal formula ω̃′2 with m̂1 appended, then

the ordered-implication abstract message history m̂↠ ω̂ is equivalent to ω̃′1 ∧ ω̃
′
2.

⊢S ω̂ ≡ ω̃

temporal-okhist

⊢S okhist ≡ true

temporal-hypmsg

S , m̂1 ⊢ ω̃
′
1 ⊢S ω̂2 ≡ ω̃2 ⊢ ω̃2 ≡ ω̃

′
2 # m̂1

⊢S m̂1 ↠ ω̂2 ≡ ω̃
′
1 ∧ ω̃

′
2

S , m̂ ⊢ ω̃ ⊢ ω̃ ≡ ω̃′ # m̂

instantiate-yes

m̂1 ≃ϑ m̂2

(m̂2 � ω̃), m̂1 ⊢ [ϑ]ω̃

instantiate-no

m̂1 ; m̂2

(m̂2 � ω̃), m̂1 ⊢ true

quotient-once

⊢ O m̃ ≡ Match(m̃, m̂) ∨ (NotMatch(m̃, m̂) ∧ O m̃) # m̂

quotient-historically-not

⊢ HN m̃ ≡ HN m̃ ∧ NotMatch(m̃, m̂) # m̂

quotient-not-since

⊢ m̃2 NS m̃1 ≡ Match(m̃1, m̂) ∨ (NotMatch(m̃1, m̂) ∧ m̃2 NS m̃1 ∧ NotMatch(m̃2, m̂)) # m̂

Figure 4.4: Instantiating CBCFTL specifications S with abstract message histories ω̂ from MHPL. The

judgment form ⊢S ω̂ ≡ ω̃ says, “Under CBFTL specification S , an abstract message history ω̂ is equivalent

to a temporal formula ω̃.” We can view this judgment as giving us an encoding into a temporal formula

ω̃, the instantiation of a specification of realizable message histories S with a particular abstract message

history ω̂ to derive a description of the realizable message histories up to a program location.

Instantiation is the process of combining the hypothetical next message of an abstract message history

with a history implication. For example, after instantiating the onClick in overview subsection 2.3.3 we
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get the following temporal formula:

O ci t.execute() ∧ O b = ci a.makeButton(a) ∧

(HN ci b.setEnable(false) ∨ ci b.setEnable(false) NS ci b.setEnable(true))

For the instantiate judgment S , m̂ ⊢ ω̃, we show only the cases for single history implications m̂2 � ω̃

where the hypothesized message m̂1 either matches (instantiate-yes) or doesn’t match (instantiate-no). The

other cases for true and S 1 ∧ S 2 just yield true and the conjunction of the instantiations in S 1 and S 2,

respectively. As m̂2 � ω̃ implicitly binds the variables of m̂2, we write m̂1 ≃ϑ m̂2 for a matching up to

a substitution ϑ from the variables of m̂2 to the variables of m̂1 and write [ϑ]ω̃ for the capture-avoiding

substitution with ϑ in ω̃. And we write m̂1 ; m̂2 for the case where m̂1 cannot match m̂2.

The quotient judgment form, shown in Figure 4.4, ⊢ ω̃ ≡ ω̃′ # m̂ is syntax-directed on ω̃ to yield ω̃′.

We show the quotienting judgments for the three temporal operators O, HN, and NS. Quotienting the other

temporal formula ω̃ productions is straightforward. Quotienting once, O m̃, with the abstract message m̂ has

two possibilities: (1) Match(m̃, m̂) — the abstract message is equivalent to the message in the “once” making

the temporal formula equivalent to “true” and (2) NotMatch(m̃, m̂) — the abstract message is not equivalent

to the message in the “once” leaving the temporal formula unchanged. Mirroring the quotienting of once,

quotienting historically not, HN m̃, with the abstract message m̂ has two possibilities: (1) Match(m̃, m̂) — the

abstract message is equivalent to the message in the “has never” making the temporal formula equivalent to

“false” and (2) NotMatch(m̃, m̂) — the abstract message is not equivalent to the message in the “has never”

leaving the temporal formula unchanged. The operator m̃2 NS m̃1 is a combination of the previous two:

either the quotiented message matches the right-hand side becoming true, or it must not match the left-hand

side.

We see that for quotienting with the temporal operators, we need an analogous encoding of match

or doesn’t match: the meta-level functions Match(m̃, m̂) and NotMatch(m̃, m̂) encode into propositional for-

mula of a symbolic message m̃ matching or not matching an abstract message m̂, respectively. Since the

message names, md, and kinds are known, Match(m̃, m̂) and NotMatch(m̃, m̂) always result in equalities

and inequalities of logic variables. For example Match(ci t.execute(), cb a.onCreate()) would be false

since the names are different. On the other hand, Match(cb a.onClick(), cb a2.onClick()) is equivalent
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to a = a2 since the names are the same.

With the ability to combine an abstract message history ω̂ from MHPL with a CBCFTL specification

of realizable message histories S via the ⊢S ω̂ ≡ ω̃ judgment, algorithms for judging excludes-initial and

entailment via SMT queries become clear. Let us write ⊢ ω̃ ≡ ψ for the encoding of a temporal formula ω̃

into a closed first-order formula ψ and use ψax for the axioms encoding message histories from section 4.2.

We define procedures for judging excludes-initial ⊢S ω̂ excludesinit as checking for the unsatisfia-

bility of ψax ∧ ψ ∧ len = 0 (where ⊢S ω̂ ≡ ω̃ and ⊢ ω̃ ≡ ψ), and entailment ω̂ ⊢S ω̂
′ as checking for the

unsatisfiability of ψax ∧ ψ ∧ ¬ψ
′ (where ⊢S ω̂ ≡ ω̃, ⊢ ω̃ ≡ ψ, ⊢S ω̂

′
≡ ω̃′, and ⊢ ω̃′ ≡ ψ′). The soundness of

checking these judgments relies on the correctness of the combining judgment:

Theorem 5 (Correct Combining of MHPL and CBCFTL). (1) If ⊢S ω̂ ≡ ω̃ such that ω · θ |=S ω̂, then

ω · θ |= ω̃. (2) If ⊢S ω̂ ≡ ω̃ such that ω · θ |= ω̃ and ω |= S , then ω · θ |=S ω̂.

Note that we assume a well-formedness condition that no abstract message is vacuous (i.e., for any

abstract message m̂ and any assignment θ, there exists a (concrete) message m such that m · θ |=S m̂). The

correctness of combining relies on correct instantiation and quotienting:

Lemma 6 (Correct Instantiating of History Implications). (1) If S , m̂ ⊢ ω̃ such that ω; m |= S and m · θ |= m̂,

then ω · θ |= ω̃. (2) If S , m̂ ⊢ ω̃ such that ω |= S and m · θ |= m̂ and ω · θ |= ω̃, then ω; m |= S .

Lemma 7 (Correct Quotienting of Temporal Formulas). (1) If ⊢ ω̃ ≡ ω̃′ # m̂ such that ω; m · θ |= ω̃ and

m · θ |= m̂, then ω · θ |= ω̃′. (2) If ⊢ ω̃ ≡ ω̃′ # m̂ such that ω · θ |= ω̃′ and m · θ |= m̂, then ω; m · θ |= ω̃.

Proofs for these statements may be found in section A.3.

4.4 Empirical Evaluation

The major challenge for a program verifier is to prove the safety of assertions that depend on the

callback order, while avoiding unsound models of the framework which could hide defects. We hypothesize

that: (1) thanks to the targeted callback control flow specification, Historia can prove safe assertions while

avoiding unsound results when an assertion does not hold. And (2) Historia can be applied to real event-

driven programs. We validate our hypotheses with the following research questions:
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RQ1: Proving Assertions: Is it possible to write a targeted CBCFTL specification for Historia and prove

safe assertions, while avoiding unsound framework models?

RQ2: Generalizability to Real-World Applications: Can Historia prove assertions on real-sized, com-

plex, and widely used Android applications?

Bug Patterns. Checking for arbitrary assertions, such as safe null dereference, is not interesting

as most safe assertions can be proven with an intra-callback analysis. So, to find assertion locations in

Android apps that require callback control flow reasoning, we identified a set of problematic API usage

patterns. We first searched bug reports of runtime crashes for popular open source Android apps satisfying

all the following criteria: (a) The issue had a stack trace similar the one shown in Figure 1.1. (b) The issue

accepted a fix that relies on the callback order. (c) The crash involved callbacks or callins from a set of

commonly used Android objects (Activity, Fragment, Dialog, View objects such as buttons and menus,

AsyncTask, and Single/Maybe from RxJava). Then, we classified the crashes according to 5 patterns of

interaction between callbacks and callins. (1) getAct[8] [44] — the Android method getActivity returns

null if called on a Fragment that is not in the “created” state, and the app dereference such null pointer

(Activity and Fragment objects are in the “created” state if the onCreate callback has been invoked, but

the onDestroy has not). (2) execute[10] [41] — the app calls execute twice on the same AsyncTask

object, ending in an exception. (3) dismiss[12] [43] — the app calls dismiss on a Dialog constructed

with an Activity that is currently in the “created” state, ending in an exception. (4) finishnull [87]

— the app dereference a field in an onClick callback, the same field can be set to null in the onPause

callback, and the app call finish on the enclosing Activity (we call “nullable” the fields that can be set

to null in a callback). (5) subsnull [58] — the app dereferences a nullable field in a callback executed

concurrently, such as Runnable run. We name the patterns with the main message involved in the crash,

followed in subscript by an “exception property”, specifying when the bug would manifest with throwing

an exception. Such exception properties may be a CBCFTL history implication (referenced by number and

listed in section A.4) specifying when the framework returns an exception, a null value, or a nullable field

dereference (indicated by null).
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Implementation. Historia implements the backward abstract interpretation with message histories

of section 4.1 for refuting callback reachability assertions in Android apps. Historia uses Soot [130] for

loading the compiled app and to implement the application only control flow graph construction (similar

to [2] but augmented with boundary transitions as discussed in subsection 4.1.1). Historia implements the

encoding of section 4.3, and uses the Z3 SMT solver [33] to check the satisfiability of temporal formulas

(section 4.2). Historia further processes callbacks in parallel and pre-empts calls to Z3 when possible for

performance. We ran our experiments using Chameleon Cloud [71] using an AMD EPYC 7763 and 256 GB

of RAM.



105
Pattern Historia no-order eager

cb, ret ci specs cb cbret ci time depth res res res

(n) (n) (n) (n) (%) (n) (%) (n) (%) (s) (n)

Bug getAct[8] 9 15 3[6,9] 3 33 1 11 2 13 9 3 ! ! false-✓

execute[10] 7 6 3[7,11] 2 29 0 0 2 33 12 3 ! ! !

dismiss[12] 7 6 2[13] 1 14 1 14 1 17 18 4 ! ! false-✓

finishnull 7 9 3[14,15,7] 3 43 1 14 3 33 52 3 ! ! false-✓

subsnull 9 17 5[16,17
18,19,20] 3 33 0 0 5 29 24 3 ! ! false-✓

Fix getAct[8] 9 16 3[6,9] 3 33 1 11 3 19 16 3 ✓ false- ! ✓

execute[10] 7 7 3[7,11] 2 29 0 0 3 43 27 4 ✓ false- ! false- !

dismiss[12] 7 6 2[13] 1 14 1 14 1 17 79 6 ✓ false- ! ✓

finishnull 7 10 3[14,15,7] 3 43 1 14 4 40 1800 5 5 false- ! ✓

subsnull 9 18 5[16,17
18,19,20] 3 33 0 0 6 33 150 5 ✓ false- ! ✓

total 66 73 10 22 33 6 9 21 29

Table 4.1: The rows of this table are split into Bug and Fix benchmarks for each pattern. We first list

the number of callbacks, callback returns, or callins that could be captured by a history implication in the

framework model. Next, we list the number of history implications (specs) written for the benchmark (listed

in section A.4), then, we show how many of the messages are in the specification. The depth captures

how many times Historia needed to step backwards through a callback (e.g. Figure 2.8 shows 4 steps

back). Historia alarms on all the bug versions (circled exclamation point), and refutes reachability of the

bug assertion for 4 out of the 5 bug-fixes (circled check mark). In the last case, Historia explored up-

to 5 callbacks before timing out at 30 min (circled five). For the comparison with ideal tools using the

“no-order” and “eager” modeling approaches, some results are labeled false-check for a false proof and

false-exclamation for a false alarm.

4.4.1 RQ1: Proving Event-Driven Patterns

In Table 4.1, we evaluate the ability of Historia and the representative state of-the art framework

modeling (no-order, eager) to prove safe fixes of the bug patterns, while correctly alarming on instances
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containing the bug. For each one of the 5 bug patterns, we distilled a Bug and a Fix benchmark application

from the real app code mentioned in the representative bug reports (slicing the app code to remove all the

components and code non-necessary to reproduce the bug). The Bug version demonstrates the usage of the

framework callbacks and callins causing the crash in the original application, while the Fix version applies

the fix from the bug report. A sound analysis should always alarm on the Bug version.

We manually wrote a CBCFTL specification sufficient to prove the assertion safe for each fix, and

then we run Historia with this specification (specs column) on both the Bug and Fix version. We compare

Historia with the main framework modeling approaches, which either do not assume any callback ordering

(no-order), or provide an eager modeling of the framework. Infer [22] and Flowdroid [11] are used as

representatives for the first and second approach, respectively. Of the 5 bug patterns, only the 4th and

5th patterns are supported by Infer and none are supported by Flowdroid. We note that Flowdroid is the

only open source tool we could run in the eager category but does not natively support these properties.

Therefore, in order to compare with the no-order model, the first three exception properties were reduced to a

nullable field and checked with Infer (i.e., we manually wrote code that would throw a null pointer exception

just before the actual exception was thrown). For the remaining two, we added nullability annotations on

the affected fields (because Infer will not alarm on a null value from a field without this annotation). For

the eager model, we manually examine the artificial main method generated by Flowdroid. This is a main

method that should behave as the original app composed with the framework. We evaluate whether any

sound and precise whole-program static analysis could prove the fix while alarming on the bug with this

main method.

Discussion of the Results Historia always (and correctly) alarms ( ! ) on all the Bug versions,

while either refutes ( ✓ ) or does not terminate before exhausting a run-time budget of 30 minutes ( 5 result

in the finishnull benchmark). For the Fix version of the finishnull benchmark, Historia still does not alarm,

but provides the partial result proving that no program execution containing less than 5 callback invocations

can reach the assertion. Interestingly, such a partial proof rules out the (abstract) execution Historia found

when failing to refute the assertion in the Bug version for finishnull , which visits 4 callbacks (see the

depth column). Targeted refinement of the framework specific control-flow specifications was required in
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each case for Historia to avoid false alarms.

Unsurprisingly, the no-order model results in false alarms on each fixed benchmark. Additionally,

for the eager model, we found that in all but one case the artificial main method generated by Flowdroid

rules out the sequence of callbacks reaching the real bug. In three of these cases, a callback that has to be

executed to reach the bug was missing from the call graph. In one case, the main method over-constrained

the callback order. For the remaining case, the eager model did not generate code that changed state when

setEnabled(false) was invoked, disabling a button. Therefore, no program analysis could distinguish

the state where onClick could not occur on that button.

4.4.2 RQ2: Generalizability to Real-World Applications

Next, we evaluate the generalizability of Historia by analyzing a set of 47 widely used applications

containing over 2 million lines of code. These apps were found and retrieved from the F-Droid repository

[39] by filtering for apps updated in the last 2 years and that are more than 8 years old (rejecting obfuscated

or otherwise difficult to inspect apps). We answer this question by searching for the five bug patterns and

attempting to verify the 1090 locations found. First, we run Historia on each location with only the exception

property, and then, we sample 8 locations that could not be proven for targeted specification refinement

including timeouts and alarms.

We searched for the five patterns described in RQ1 using the application-only control flow graph.

For the execute and dismiss patterns, we searched for the callins in the call graph. The remaining three

patterns use an intraprocedural data flow analysis to find nullable values that were dereferenced. This value

comes from either getActivity for the first pattern or a nullable field for the remaining patterns. The

finish pattern looks for such dereference commands in the onClick callback when the finish method is

used, and the subs pattern looks for dereferences in common concurrency callbacks.
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Pattern Historia Flowdroid

locations apps KLOC alarm timeout safe K methods K methods

(n) (n) (n*1000) (n) (%) (n) (%) (n) (%) (n*1000) (n*1000)

getAct[8] 558 24 1,655 261 47 97 17 200 36 105 22

execute[10] 155 31 1,669 0 0 2 1 153 99 92 18

dismiss[12] 291 38 1,853 43 15 208 71 40 14 102 21

finishnull 31 8 323 3 10 3 10 25 81 29 6

subsnull 55 10 1,108 1 2 7 13 47 85 16 3

total 1090 47 2,058 308 28 317 29 465 43 121 28

Table 4.2: Verifying usages of the multi-callback patterns among 47 open-source Android apps with only the

exception property. We list the results by alarms where Historia finished but could not prove the property,

timeouts where Historia took over half an hour, and safe where no further specification was needed. We

list the number of app methods that are contained in the call graphs of both Historia and Flowdroid. There

were 9 apps that timed out with Flowdroid. Among the 38 apps that Flowdroid could finish on, it found 28k

application methods as compared to 70k application methods found by Historia.

Results are reported in Table 4.2. The first column lists the individual patterns while the second

column lists the locations found for each. For scale, we list the thousands of lines of code contained by

the apps the patterns were found in KLOC. We then report the number and percentage of the locations that

Historia alarms on, timeouts on, and is able to prove safe. As the most common unsoundness in RQ1 was

missing methods from the call graph, we compare the number of application methods found in the call graph

of Historia and Flowdroid. A higher number of methods indicates more code is being analyzed.

Table 4.3 lists 8 randomly sampled locations from distinct apps that Historia could not prove without

refinement. For each sample, we recorded the time required to write the CBCFTL specification in the ”spec

time” column. The time to understand the callbacks being specified is not included in the recorded time,

as this would be required for any modeling approach. If it took more than an hour to run Historia or if we

took more than an hour to write the specification time, we record a timeout ⊗ in the result (res) column.
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Sample Historia

App Pattern cb,ret ci specs cb cbret ci time res spec time
(n) (n) (n) (n) (%) (n) (%) (n) (%) (s) (m)

Vanilla Music getAct[8] 473 5,440 ⊗ 60
OpenVPN getAct[8] 938 9,628 2 49 5 5 1 167 2 0 ✓ 5
Seafile getAct[8] 2,464 19,562 2 54 2 9 0 68 0 1 ✓ 5
Syncthing getAct[8] 709 5,573 3,600 ⊗ 9
Navit finishnull 279 2,424 3,600 ⊗ 54
Connectbot dismiss[12] 19∗ 248∗ 1 0 0 0 0 2 1 754 true- ! 4
BatteryBot getAct[8] 171 2,470 1 7 4 4 2 55 2 1 ✓ 3
Antennapod getAct[8] 3,906 2,3056 3,600 ⊗ 35

Table 4.3: We sampled 8 locations that could not be proven from Table 4.2 and attempted to add CBCFTL
specifications to prove them safe. These are listed by app name as all samples were chosen so the apps are
unique; specific locations app versions and links may be found in section A.4. ∗The Connectbot benchmark
here was a timeout in Table 4.2; we manually removed callbacks to help find the alarm and understand the
bug, while the benchmarks were unmodified.

For perspective on the modeling difficulty, we list the number of messages that could be captured by the

specification (the cb,ret and ci columns under Sample), as well as the total number of specifications as

history implications we wrote (under the specs column) and the number and percentage of app messages

that could be matched (the cb, cbret, and ci columns under Historia).

Discussion

Before manual refinement of the specification of the framework model, our tool was able to prove 43%

of the locations safe, raise alarms on 28% and times out on 29%. We note that for execute[10] , finishnull

, and subsnull , we get few alarms as developers appear to use these patterns defensively. Of the 8 samples,

we found that we were able to correctly classify 4 locations within the hour budget of specification writing

time (and always in within 5 minutes) and the hour budget of Historia run time (and from a few seconds to

a few minutes). Of the 4 timeouts, one was from the specification writing time, and the rest were Historia

taking more than an hour.

In the 3 cases where we were able to prove locations, the specifications ignored 95% or more of the

boundary transitions in the app (i.e., no abstract message can match the majority of transitions in the applica-

tions). This highlights a performance benefit to targeted-refinement — although our analysis is unbounded

in the worst case, in practice the majority of the messages that boundary transitions in the app can produce
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do not affect the encoded meaning of the message history, and most abstract states are immediately merged

via entailment. Calling back to section 4.3, the specification ignoring most messages means that most of

the time the quotient judgments result in an equivalent message history. Ignoring most messages allows

most abstract states to be merged. With benchmarks containing hundreds to thousands of callbacks among

thousands to tens of thousands of app methods and SMT calls for each new abstract pre-state, this means

that we are avoiding the exponential explosion in the typical case.

It is also noteworthy that the application-only control flow graph used by Historia captures signifi-

cantly more applications methods than Flowdroid. Among the applications that we could use Flowdroid to

build call graphs for, it found 28K app methods. In these same apps, Historia found 70K app methods. This

seems to reflect our observation from RQ1 that it is very challenging to capture all possible callbacks while

eagerly modeling the framework and thus an argument for the targeted modeling approach of Historia.

4.4.3 Threats to Validity

The main threat to validity of our experiments is the shifting behavior and authors understanding of

the Android framework for which we used as a case study. As noted in the Introduction, manual modeling of

the Android framework is extremely difficult. Even though the application-only control flow graph appears

more sound from these experiments, we found that it is possible to miss callbacks without a complete list

of objects the framework can instantiate with reflection. To reduce the risk of an unsound call graph, we

ensured that each location in RQ1 and a sampling of locations from RQ2 cannot be proven unreachable for

any state (i.e., is reachable under some app state) unless the location appears to actually be unreachable

through manual inspection.

4.5 Related Work

Depending on the analysis domain, precise models are often included for some components but elided

for others. A common approach, particularly in industrial Android analysis tools, is to use no model at all

(i.e., the most over-approximate model). Verifiers with no callback order modeling have the advantage of

performance and are the easiest to maintain but have a high false alarm rate requiring heuristic filtering [23].
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Precision is added to the callback control flow models for a range of different domains of static analysis.

Awareness of the Activity lifecycle and other user interface callbacks can improve taint analysis for security

[11, 54, 24]. Other program analysis tools will use the Activity lifecycle in addition to precise models of

other user interface components for verifying user interface properties [137, 136, 101]. Framework precision

with respect to objects used for concurrency such as AsyncTask and thread pools is often captured for race

detection [137, 136, 62, 134] and other tools that detect concurrency issues [97]. For our experiments,

we added precision for some callbacks from the Activity lifecycle, other user interface components, and

objects for concurrency such as AsyncTask. The benefit of our compositional modeling approach is that

components may be added on an as-needed basis as opposed to eagerly modeling a large portion of the

framework.

Building the model of the framework directly into the program semantics used for the analysis has the

advantage that the subsequent abstraction may be precisely chosen based on the modeled behavior. Many

of the tools that build the model into the analysis capture UI elements, inter-component communication,

and the stack like behavior of windows [136, 24, 99, 114]. The drawback to building the model directly

into the analysis is that adding or updating behaviors [63] requires modifying the analysis itself. The most

common approach to model callback orders is by generating an artificial main method [11, 98, 62, 10, 54].

An artificial main method has the advantage that modeling can be decoupled from the program analysis by

generating code that enforces a callback order to link with the application. When analyzing with such a

main method, the normal abstraction used by the program analysis captures the callback control flow (e.g.,

through context sensitivity). The generation of main methods that can be abstracted precisely is a challenge.

Capturing behavior such as arbitrary interleaving between callbacks (e.g., multiple simultaneous activities)

can be difficult while avoiding language features that cause imprecision in analysis such as dynamic dispatch.

We note that race detectors often combine some aspects of hard coding the callback control flow into the

program semantics with utilizing an artificial main method (often for call graph construction). Automata

and graph based approaches to modeling and abstraction [17, 101] are compositional and only rely on

knowledge of relative order between callbacks. A difficulty with any modeling approach that eagerly models

components is that the more components are modeled, the more likely the model is unsound. Unsoundness
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is common among any approach we listed that captures some callback order [88, 133, 25]. Our approach can

lessen the risk here by enabling a targeted approach to callback control-flow modeling to avoid modeling

more than necessary.

4.6 Conclusion

We have described a novel middle way for refuting callback reachability that enables a decoupling

of the specification of callback control flow from the abstract interpretation to compute program invariants

over an application-only transition system. This decoupling offers the appealing capability to gradually

refine the possible callback control flow as needed and in a targeted manner to prove an assertion of interest,

and it thus moves us past the false dichotomy of either using no modeling or eagerly modeling all callback

control-flow constraints. The key innovation of our approach is an internalization of message histories into

the analysis abstraction as a hypothetical (i.e., an ordered linear implication) to capture message histories

up to a program location constrained by future messages and parametrized by a separate specification of

realizable message histories. We then define a specification logic for callback control flow (CBCFTL) that

carefully specializes past-time linear temporal logic so that we can utilize message-history program logic

(MHPL) assertions together with CBCFTL specifications. Our evaluation provides evidence with a proof-

of-concept implementation that our approach can refute callback reachability in challenging examples drawn

from real-world issues among open-source apps.



Chapter 5

Discovery and Explanation of Event-Driven Defects with History-Aware Incorrectness Logic

The previous section has established a technique for proving a safety property at a location in an

event-driven application. In this chapter, we present a technique extending message history aware program

logics to find the message history reaching a given location or defect. This technique is useful for two

purposes: First, finding a message history that reaches a defect can be used to explain how a multi-callback

crash happens. And, second, finding a message history reaching a known reachable location shows that

a framework model is consistent. A framework model is unsound if it allows a known reachable location

can be “proven” unreachable. However, an alarm from Historia on such a location does not guarantee

reachability under a framework model due to abstraction of the program behavior. Therefore, a technique

that proves reachability under a model is desirable. Later, we show how this technique may be used to ensure

that the model resulting from framework model synthesis is consistent with observed reachable locations.

This chapter first presents a goal-directed incorrectness logic in section 5.1 that complements goal-

directed verification and the design of our framework modeling language, Callback Control Flow Temporal

Logic. Effectively, this technique is designed to accumulate an abstraction of concrete states that must step

to the target location or crash. This backwards, goal-directed, style of reasoning pairs well with history

implications that say “if a given message occurs now, here are the restrictions on the message history”.

Next, section 5.2 describes how the memory of the application may be split into a live portion and an

irrelevant portion so that application memories reaching the target location may be efficiently represented.

Conceptually, when the analysis starts at a program location of interest, it is best to be able to say ”any

memory at this location” and then refine portions of the memory as they are read by the applicaiton. Finally,



114

we show how the abstract message histories may be used in the context of a backwards incorrectness logic.

These contributions are then tested by implementing our techniques in a tool called WiStoria that takes

a framework model and finds a message history consistent with that model reaching the target location. We

evaluate WiStoria by finding message histories reaching representative examples of the nine most common

runtime crashes developers face based on blog posts.

5.1 Goal-Directed Incorrectness Logic

In this section, we present a novel formulation of incorrectness logic that abstracts states in a program

that must reach a defect of interest. Distinct from the normal formulation of incorrectness logic, we start

at a location and abstraction of states representing a defect and work backwards through the program. The

defect is proven reachable if the initial state is included in the abstraction.

We present our goal-directed semantics with a concrete transition system over commands and loca-

tions shown by the first part of Figure 5.1. The goal of these semantics is to structure the problem of finding

an assertion violation as reachability of a specific target location in the program. For clarity of the formal

semantics, we represent the error condition as a location with an unspecified state. It is always possible to

compile an assertion to the reachability of a location. The error conditions presented in the overview and

evaluation sections are the abstract state just before this compiled assertion. Such a compilation may be

done with if statements for assertions over boolean expressions.

Programs p are represented by a set of transitions t. Each transition ℓ−[c]� ℓ′ has a source location,

a command, and a target location respectively. Locations ℓ are left abstract, but can be thought of as each

location between commands. Execution starts at a special initial location ℓinit. Concrete semantics are given

by the small step semantics captured by the judgment form ℓ : σ −→p ℓ′ : σ′. This logic consists of an

unstructured control flow graph over program locations ℓ and a command language c which is defined in

the next two sections of the paper. The c-step captures a concrete step that first chooses a transition in the

program ℓ−[c]� ℓ′ ∈ p and then executes the concrete step over the command ⟨σ, c⟩ ⇓Ω σ′.Specific program

states σ and commands c are left abstract for now and expanded in the next two sections along with the

judgment defining the concrete semantics of commands ⟨σ, c⟩ ⇓Ω σ′. We use ℓ′ : σ′ −→∗p ℓ : σ to indicate
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the reflexive transitive closure of the step judgment form.

program p ::= ◦ | p, t transitions b ::= ℓ−[c]� ℓ′ locations ℓ initial location ℓinit

program states σ initial program state σinit

ℓ : σ −→p ℓ
′ : σ′ ℓ : σ |=S Σ̂ ⊢p ℓ reach Σ̂ ⊢S ℓ

c-step

ℓ−[c]� ℓ′ ∈ p ⟨σ, c⟩ ⇓Ω σ′

ℓ : σ −→p ℓ
′ : σ′

abstract program states σ̂ abstract state collections Σ̂ ::= ℓ : σ̂, | ◦

ℓ : σ |=S ℓ : σ̂, iff σ |=S σ̂ or ℓ : σ |=S Σ̂
′

a-witness

ℓ : σ̂, ⊢S ℓ ⊢ σ̂
′ includesinit ℓinit : σ̂′ ∈ Σ̂

⊢p ℓ reach

a-collect-transition

ℓ−[c]� ℓ′ ∈ p ℓ′ : σ̂′ ∈ Σ̂ ⊢ [σ̂] c [σ̂′] Σ̂ ⊢S ℓ′′

ℓ : σ̂, ⊢S ℓ′′

Figure 5.1: A concrete and abstract goal-directed semantics of an unstructured control flow graph. We

reduce the reachability of a failure to a location with an arbitrary state. A location ℓ is reachable if the

judgment ℓ′ : σ′ −→p ℓ : σ can reach some state at that location from the initial location ℓinit and initial state

σinit. Reachability in our goal-directed incorrectness logic is captured by the judgment form ⊢p ℓ reach

which depends on the collect transition judgment form Σ̂ ⊢Sp in order to abstract states reaching the location

of interest. Individual abstract states at locations σ̂ are required to have a concretization σ |=S σ̂ relation that

defines the abstracted states. These semantics also rely on a judgment that can determine when the abstract

state must include the initial state ⊢Ω σ̂ includesinit.

We represent abstract program states with σ̂, and assume that there is a concretization relation σ |=S σ̂

connecting abstract states to the concrete states they represent. To collect the abstract states at each location,
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we use Σ̂ to collect pairs of abstract program states and locations. Multiple abstract states may exist at a

single location. Two abstract states at one location represents any state that models a single abstract state at

that location. Concretization of a state with respect to the abstract state collection ℓ : σ |=S Σ̂ holds if the

location is in the abstract state collection paired with an abstract program state such that the concretization

holds.

Our program logic captures reachability with the judgment form ⊢p ℓ reach that holds when ℓ must

be reachable. This judgment holds if three things are true, formalized in A-Witness: (1) An abstract state

collection can be found such that there is some state at the target location and all other states must step to

the target location. (2) There is some state σ̂′ in the abstract state collection paired with the initial location.

(3) The abstract state σ̂′ must represent the initial state: ⊢ σ̂′ includesinit.

Theorem 8 (Witness Soundness). If ⊢p ℓ reach then we have that ℓinit : σinit −→
∗

p ℓ : σ for some σ.

The judgment form Σ̂ ⊢S ℓ defines an abstract state collection Σ̂ such that each abstracted state must

step to location ℓ under program p. This is defined inductively through the judgment a-collect-transition

stating that if there is a location abstract state pair ℓ : σ̂ in an abstract state collection reaching location ℓ′′

(i.e. ℓ : σ̂, ⊢S ℓ′′) then, there must be: (1) a transition in the program such that it goes to a target location ℓ′,

(2) where the abstract state of the target location is σ̂′, (3) the under-approximate hoare-triple Σ̂ ⊢S ℓ holds

on the post state generating the pre-state σ̂ and, (4) inductively, the abstract state collection holds on the

target location ℓ′′ (i.e. Σ̂ ⊢S ℓ′′ ). Soundness for this judgment form follows from the following lemma.

Lemma 9 (Collect Sound). If Σ̂ ⊢S ℓ and ℓ′ : σ′ |=S Σ̂ then ℓ′ : σ′ −→∗p ℓ : σ for some σ.

The judgment form representing the backwards incorrectness hoare-triple, ⊢ [σ̂] c [σ̂′], says that

given a post condition σ̂
′ then all states represented by σ̂ must step to a post state in σ̂

′ which is in the

abstract state collection due to the a-collect-transition judgment. Over the next two sections, we expand on

what we use for the program state σ and abstract program state σ̂. For now, we require that this judgment

conforms to the following soundness condition: If ⊢ [σ̂] c [σ̂′] and σ |= σ̂ then ⟨σ, c⟩ ⇓Ω σ′ and σ′ |= σ̂′.

The “includes initial” judgment form (⊢ σ̂ includesinit) holds if the concretization of the abstract

state σ̂ must include the initial state σinit. That is, σinit |= σ̂. The next two sections define the specifics of
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this judgment in more detail.

5.2 Abstracting the Relevant Heap for Goal-Directed Reasoning

In the previous section, we started our analysis at the location of interest stating that “some state

is feasible at the target location”. However, starting this way is not so simple: we need to represent the

irrelevant portions of the heap that are not read along the path to the error. At the target location discussed

in the previous section, the entire memory is irrelevant. In contrast, relevant portions of the heap are those

that can change the reachability of the defect. Consider for example the error-condition in the overview,

where the outer and remover fields must be set at the error location, but it is impossible to guess this when

starting the analysis without enumerating formula precisely representing the memory at the error location.

Rather, we start our query at the target location, abstract the rest of the program memory, and constrain

memory cells read and written by commands along the path to the defect.
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memory commands c ::= x = y. f | x. f = y | x = null | assume x = y | assume x , y variables x | y

field names f values v ::= null | a addresses a memory location n ::= x 7→ v | a. f 7→ v

memories µ ::= ε | n | µ ⊎ µ′ initial empty memory ε

µ[n] µ[n] def
= µ ⊎ n iff dom(µ) ∩ dom(n) = ∅ µ ⊎ n′[n] def

= µ ⊎ n iff dom(n) = dom(n′)

⟨µ, c⟩ ⇓Ω µ′

c-field read

µ(y) , null µ′ = µ[x 7→ µ(µ(y). f )] x , y

⟨µ, x = y. f ⟩ ⇓Ω µ′

c-field write

µ(x) , null µ′ = µ[µ(x). f 7→ µ(y)]

⟨µ, x. f = y⟩ ⇓Ω µ′

c-assume eq

µ(x) = µ(y)

⟨µ, assume x = y⟩ ⇓Ω µ

c-assume neq

µ(x) , µ(y)

⟨µ, assume x , y⟩ ⇓Ω µ

c-null assign

⟨µ, x = null⟩ ⇓Ω µ[x 7→ null]

Figure 5.2: Concrete semantics for a java like heap manipulating language. Concrete memories consist

of empty, memory locations n storing a variable or a field value, or a disjoint union of heaps µ ⊎ µ′ (e.g.

v. f 7→ v′′ ⊎ v′. f 7→ v′′ implies v , v′).

We first present concrete semantics for a heap manipulating language consisting of field reads and

writes, null, and assume commands, shown in Figure 5.2. As we will see in section 6.4, this fragment of the

language is sufficient to express a wide range of defects, as well as find a wide variety of practical defects.

Values v in this language consist of either null or some address a. Addresses are initially created by the new

command discussed in the next section. Memory locations n are individual locations in the memory such

as variables or fields on addresses. The program memory µ consists of an empty memory emp, memory

locations n, or a disjoint union of memories µ ⊎ µ′. By disjoint, we specifically mean that the keys for each

memory location are separate, µ ⊎ µ′ implies that dom(µ) ∩ dom(µ′) = ∅.

For convenience in the concrete semantics, we use short-hand notation for accessing and setting
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memory locations. A memory’s domain dom(µ) is the set of defined variables x and fields a. f . The no-

tation µ[n] means to add the memory location n to the overall memory µ overwriting any other memory

location with the same domain if it exists. We use the notation µ(x) to indicate that the memory must

have some key x and that this expression evaluates to the corresponding value (e.g. µ(x) , µ(y) becomes

µ = µ′ ⊎ x 7→ v ⊎ y 7→ v′ and v , v′). For c-field read, c-field write, and c-null assign we use relatively

standard Java-like semantics. Accesses to fields require that the object be non-null. Assume expressions

give our language control flow when combined with the unstructured control flow graph from the previous

section. We restrict our language to assuming the equality or inequality of variables using c-assume eq and

c-assume neq,for simplicity of formalization.

The key to our abstract semantics is splitting the relevant portion of the heap that may be read along

the path to the defect from the irrelevant portion of the memory that will not be read. We use the symbol

irrelevant to abstract the portion of the heap that is not read along some path to the target location. Any

abstract memory location n̂ represents memory that may be read at some point along the path to the error.

Figure 5.3 shows the abstract domain for application memories. An abstract memory µ̂ follows the

same notation as standard separation logic and represents sets of concrete memories through the concretiza-

tion relation µ·θ |= µ̂ ·̂π. These abstract memories can be irrelevant in which case they represent any memory,

a single memory cell n̂, or separating conjunction over abstract memories µ̂ ∗ µ̂′. The symbol “irrelevant”

concretizes to any abstract memory. However, we maintain an additional meaning: irrelevant may only ab-

stract portions of memory such that the defect may be reached without reading one of the memory locations.

Individual memory cells that may be read along the path to the error condition are represented by the symbol

n̂ which consists of an abstract field and an abstract value or a variable an abstract value. We represent such

live portions of memory with live(̂µ), which consists of every abstract memory location in the abstract mem-

ory. The liveness of materialized memory locations is enforced by the abstract semantics. We use live(̂µ)

to represent the syntactic set of keys in the relevant portion of µ̂ (i.e. memory locations represented by a

memory location n̂ and not irrelevant).
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abstract memories µ̂ ::= irrelevant | µ̂ ∗ µ̂′ | n̂ abstract memory location n̂ ::= x 7→ v̂ | v̂. f 7→ v̂′

abstract values v̂ ::= null | x̂ | ŷ | ... pure constraints π̂ ::= v̂ , v̂′ | π̂ ∧ π̂′

valuation θ ::= ◦ | θ[x̂ 7→ v]

µ · θ |= µ̂ · π̂ µ · θ |= irrelevant · π̂ iff θ |=S π̂

µ⊎µ′ ·θ |= µ̂∗ µ̂
′
· π̂ iff µ ·θ |=S µ̂ · π̂ and µ′ ·θ |=S µ̂

′
· π̂ x 7→ v ·θ[v̂ 7→v] |= x 7→ v̂ · π̂ iff θ[v̂ 7→v] |=S π̂

v. f 7→ v′ · θ[v̂ 7→ v][v̂′ 7→ v′] |= v̂. f 7→ v̂′ · π̂ iff θ[v̂ 7→ v][v̂′ 7→ v′] |=S π̂ live(̂µ)

live(irrelevant) def
= ∅ live(̂µ ∗ µ̂′) def

= live(̂µ) ⊎ live(̂µ′) live(x 7→ v̂) def
= {x} live(v̂. f 7→ v̂′) def

= {v̂. f }

Figure 5.3: Abstract states representing sets of memories. Key to this abstraction is that the memory is

divided into a relevant portion represented by abstract memory locations and an irrelevant portion.

We use π̂ to represent pure constraints consisting of inequality,conjunction, and top. Equal values

are represented by simply using the same logic variable v̂. Disjunction of abstract states is handled by the

abstract state collections from section 5.1. Valuations, θ are used to ensure that abstract values in different

parts of the abstract state concretize to the same value.

As we discussed in the previous section, the soundness condition for one of these triples ensures that

any state in the pre-condition µ · θ |=S µ̂ · π̂ must correspond to a concrete step to a post state in the post-

condition µ′ ·θ′ |=S µ̂
′
· π̂
′. Specifically, these semantics hold to the following condition: If ⊢ [̂µ · ·]c [[·′ · π̂]̂µ′]

and µ·θ |= µ̂·t·hen ⟨µ, c⟩ ⇓Ω µ′ and µ′ ·θ′ |= [·′ ·̂π]̂µ′ for some θ′. The abstract semantics enforce this condition

by requiring that every portion of the memory that is read by a command must be precisely represented with

an abstract memory location n̂.

Since all the judgments over commands rely on the full footprint of the command being materialized

in the abstract memory, the a-strengthen rule is used to add missing variables or heap cells. The structure

of our rules ensures that precisely the footprint is represented by the post condition of a command in order

to generate a pre-condition. For example, Fwk1 from the example in section 2.3 does not have a okButton

field but Fwk2 does since this field was read by the onClick between. Our program logic assumes that
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we can algorithmically guess the aliasing relationships and strengthen the post condition to reference the

required variables. If the guess is wrong, then the path will become unreachable and no witness can be

found. If the guess is correct, then the witness may be found. In the practical implementation, we simply

case split on all the aliasing possibilities and see which one works.

⊢ [̂µ · π̂] c [̂µ′ · π̂′]

a-strengthen

⊢ [̂µ · π̂] c [̂µ′′ · π̂′′] µ̂
′
· π̂
′
⊢ µ̂
′′
· π̂
′′

⊢ [̂µ · π̂] c [̂µ′ · π̂′]

a-field read

x < live(̂µ)

⊢ [ŷ. f 7→ x̂ ∗ y 7→ ŷ ∗ µ̂ · ŷ , null ∧ π̂] x = y. f [ŷ. f 7→ x̂ ∗ x 7→ x̂ ∗ y 7→ ŷ ∗ µ̂ · π̂]

a-field write

x̂. f < live(̂µ) π̂ = π̂
′
∧
∧

ẑ. f∈live(̂µ)
ẑ , x̂

⊢ [x 7→ x̂ ∗ y 7→ ŷ ∗ µ̂ · x̂ , null ∧ π̂] x. f = y [x̂. f 7→ ŷ ∗ x 7→ x̂ ∗ y 7→ ŷ ∗ µ̂ · π̂′]

a-null assign

x < live(̂µ)

⊢ [̂µ · π̂] x = null [x 7→ null ∗ µ̂ · π̂]

a-assume eq

⊢ [x 7→ x̂ ∗ y 7→ x̂ ∗ µ̂ · π̂] assume x = y [x 7→ x̂ ∗ y 7→ x̂ ∗ µ̂ · π̂]

a-assume neq

⊢ [x 7→ x̂ ∗ y 7→ ŷ ∗ µ̂ · π̂ ∧ x̂ , ŷ] assume x , y [x 7→ x̂ ∗ y 7→ ŷ ∗ µ̂ · π̂ ∧ x̂ , ŷ]

θ ⊢ µ̂ · π̂ includesinit

mem-includes init

θ ⊢ π̂

θ ⊢ irrelevant · π̂ includesinit

Figure 5.4: Backward abstract semantics over our heap manipulating language. Key to these semantics

is that the memory a command operates on is always in the “relevant” portion of the heap represented by

abstract memory locations. The irrelevant memory represented by the symbol irrelevant can only contain

memory locations that are never read or written after the current location. Under-approximation occurs in

either the pre or post-state based on the a-strengthen judgment.

Once the post state has been strengthened to represent all the variables that are read by a command,
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we can apply the appropriate abstract step. In the assignment judgments a-field read, a-field write, and

a-null assign, the memory is split into a relevant portion represented by individual abstract memory locations

in the pre and post state and the rest of the memory represented by µ̂. For each of the assignment operations,

the assigned memory location must not be in the domain of the irrelevant portion of memory (e.g. x < live(̂µ)

for the field read and x̂. f < live(̂µ) for field write). The primary reason is to ensure that the post state

is feasible even though the command only operates on the relevant portion of memory (e.g. the abstract

memory x 7→ a ∗ x 7→ a′ implies false so any concrete state in the pre-condition would violate the earlier

stated condition). The secondary reason is that when a value is assigned by a command, it cannot be live in

the pre-condition (any value in that memory location cannot be read after this command). Regardless of the

value in the pre-condition, a written location takes on a specific value in the post condition (note that our

command language does not allow reading and writing of a memory location within the same command).

For a-field write, we must ensure that the object of the field write is not equal to all other instances of the

same field in the abstract memory. Otherwise, constraints about logic variables being not equal may be lost

at this step. Assume statements block if the condition does not hold but otherwise do not alter the memory

state. For simplicity, we only have equality and inequality with assume statements.

As discussed in the previous section, we need a way to determine when the abstract state must include

the initial state. With the way that our abstract state is formulated, we reach the initial state when no

memory locations are constrained (i.e. the memory represented by irrelevant). Includes initial is sound if

θ ⊢ µ̂ · π̂ includesinit then ε · θ |= µ̂ · π̂ which holds due to the concretization of “irrelevant”.

5.3 Execution History Abstractions for Finding and Explaining Defects

The final part of discovering and explaining event-driven defects is to abstract the execution history

capturing the behavior of the framework. This consists of capturing the transitions between the application

and framework as well as describing the new command and the associated values. We first describe the

background on message history program logics. Then we show how we can modify the message history

program logics to prove an execution sequence reaches the defect. Finally, we show how to recover the

execution sequence for the end user of our tool.
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Background: Application Only Transition Systems and Message History Program Logics. This sub-

section is meant to give background and connect the notation we use in Figure 5.5 to the work on using

message history program logics to prove safety properties [89]. Specifically, we give background on: (1) the

application only transition system for analyzing the application without the framework implementation.

(2) message history program logics for abstracting the callback control flow, and (3) callback control flow

temporal logics for capturing the realizable message histories.

As discussed in the overview, an application only transition system is an unstructured control flow

graph like the one described in section 5.1 but with the framework transitions removed. All the framework

transitions are merged into a single framework location ℓFwk. For each transition in or out of the framework,

there is a boundary message command cmsg such as cb this.onCreate() to indicate the method called

and the argument this. The transitions for the application itself are left unmodified.

It is assumed that a record of the sequence of boundary message commands and associated values is

sufficient to determine if a given execution is or is not possible. This sequence is referred to as a message

historyω and consists of a sequence of boundary message commands m with arguments and return variables

swapped out for runtime values. We write Ω to represent the set of message histories that may be seen under

some framework implementation, that is these message histories are realizable. We assume that a judgment

form ⟨µread, cmsg⟩ ⇓ ⟨µread ⊎ µwrite,m⟩ exists such that µread is precisely the memory ready by the boundary

transition and µwrite is precisely the memory written added to the memory that was read. The details of such

a judgment are straightforward. The memory read is the variables used as arguments for a callin (e.g. tmp

in the line tmp.execute() or the return value of a callback). Written memory is the variables assigned by

a transitions (e.g. arguments to callbacks such as the this variable or return values from callins). Each of

these values are then captured by the message m along with the name of the method and the type of boundary

transition.

Message history program logics abstract the history of boundary transitions one message at a time.

Starting at the target location, we abstract the set of realizable message histories with the symbol okhist.

Then, as the analysis traverses boundary message commands that emit messages, the messages are “re-

moved” from the end using m̂ ↠ ω̂. The meaning of this is that it abstracts every message history such
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that appending some message m abstracted by m̂ is still realizable. As we will see, this abstraction is also

sufficient for under-approximating the execution history reaching the defect.

To define the realizable message histories, the Historia paper introduces Callback Control Flow Tem-

poral Logic (CBCFTL). CBCFTL is a first-order temporal logic designed to be used as a domain spe-

cific language for writing down the message histories that are realizable between a running application and

framework. The specific structure of CBCFTL is designed to maintain performance when deciding prop-

erties about abstract message histories. A definition of framework behavior in CBCFTL consists of a set

of history implications. Each history implication is marked by a� operator. On the left side of the�

operator is a target message, a callback or callin. The right side contains a formula matching when that

callback or callin may occur. Since such history implications are only used by the analysis as transitions are

encountered, the framework may be modeled as needed rather than developing a full model up front.

A definition of realizable framework behaviors may be combined with an abstract message history

to decide when a particular concrete message history may be modeled. Given some abstract message his-

tory m̂ ↠ ω̂ and a history implication with a left hand side message matching m̂, then ω̂ must be con-

sistent with the right hand side. For example, the abstract message history from the error condition in

the overview ciexn r.execute() ↠ okhist combines with the history implication ciexn t.execute()�

O ci t.execute() to represent the message histories that are realizable (i.e. okhist) and where Once in the

past, ci t.execute() was invoked. The resulting formula may then be over-approximated by an encoding

into the extended effectively propositional logic [73, 96] fragment of first order logic. The message history

itself is represented by a total order over a message type and other uninterpreted functions are used to capture

the message type, name, and arguments. In our example it becomes ∃t ∈ Addr, i ∈ [0, tracelen].ω[i] =

ci t.execute(). This resulting formula may then be given to a SMT solver to determine if it excludes the

initial state. Similarly, an abstract state with two execute calls,

ciexn t.execute()↠ ciexn r.execute()↠ okhist may be encoded such that any trace is abstracted if and

only if t = r.

However, it is important to note that the above formula is over-approximate in that the behavior

of the framework represented by okhist is elided. Additionally, this work cannot precisely represent the
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memory as it does not restrict the framework from returning a value that is subsequently also returned by an

application call to new.

Precisely Abstracting Framework Behavior with Execution Histories.

Our key observation in this section is that we may modify the message history program logic into

an execution history program logic and precisely represent the execution history reaching the defect. In

section 5.2 we observed that the memory read along the path to the defect should be precisely represented.

Here, we observe that the key to under-approximation of the execution history is to precisely represent the

messages and invocations of new from the current location to the target location. For many of the needed

operations, the semantics of the message history program logic are sufficiently precise to be used as an

under-approximation. In this section, we focus on showing how the addition of a new command to the

abstract message history turning it into an abstract execution history is sufficient for our fragment of the

Java language.

Figure 5.5 presents a concrete semantics that focuses on the message histories and the new command.

We refer to any command that needs to be abstracted with respect to the execution history a sequence com-

mand cs. For our fragment of the language, these are the new command and boundary message commands

cmsg. A message command is a command at the boundary between the app and framework where we assume

arguments are read or written on the boundary of a method invocation resulting in a message m. The pro-

gram state σ extends the memory discussed in the previous section with a message history. The judgment

form ⟨σ, cs⟩ ⇓
Ω σ′ captures the evaluation of sequence commands. With the judgment c-new there must be

a value v bound to the target variable x in the post state and this value cannot have appeared in the memory

or message history previously. Message commands are captured with c-msg cmd which differs the semantics

of a message command to the judgment ⟨µread, cmsg⟩ ⇓ ⟨µread ⊎ µwrite,m⟩. This judgment reads variables in

µread corresponding to a callback return value or arguments for a callin and writes variables in µwrite corre-

sponding to arguments of a callback or the return value from a callin. The values in the combined memory

µwrite ⊎ µread corresponds precisely to the values in m.
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sequence commands cs ::= x = new | cmsg boundary message commands cmsg

messages m message history ω ::= ε | ω; m program states σ ::= µ · ω

⟨σ, cs⟩ ⇓
Ω σ′

c-new

ω ∈ Ω v < µ v < ω

⟨µ · ω, x = new⟩ ⇓Ω µ[x 7→ v] · ω

c-msg cmd

⟨µread, cmsg⟩ ⇓ ⟨µread ⊎ µwrite,m⟩ ω; m ∈ Ω

⟨µ ⊎ µread · ω, cmsg⟩ ⇓
Ω µ[µwrite] ⊎ µread · ω; m

Figure 5.5: Concrete semantics capturing the state of the framework in the ghost variable ω representing the

history of commands that can indicate framework state as well as the precise behavior of new.
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abstract program states σ̂ ::= µ̂ · ω̂ · π̂ abstract observable ê ::= new x̂ | m̂

abstract execution histories ω̂ ::= okhist | ê↠ ω̂

ω · θ |=Ω ω̂ σ · θ |=Ω σ̂ ω · θ |=Ω okhist iff ω ∈ Ω

ω · θ |=Ω new x̂↠ ω̂ iff θ(x̂) < ω and ω · θ |=Ω ω̂

ω · θ |=Ω m̂↠ ω̂ iff m · θ |=S m̂ implies ω; m · θ |=Ω ω̂

µ · ω · θ |=Ω µ̂ · ω̂ · π̂ iff µ · θ |= [·] · π̂̂µ and ω · θ |=Ω ω̂ and forall new x̂ ∈ ω̂ implies θ(x̂) < µ

⊢ [σ̂] cs [σ̂′]

a-new

x < live(̂µ)

⊢ [̂µ · new x̂↠ ω̂ · π̂] x = new [̂µ ∗ x 7→ x̂ · ω̂ · π̂]

a-msg cmd

⊢ [̂µread · π̂]cmsg[̂µread ∗ µ̂write · π̂, m̂] live(̂µwrite) ∩ live(̂µ) = ∅

⊢ [̂µ ∗ µ̂read · m̂↠ ω̂ · π̂] cmsg [̂µ ∗ µ̂read ∗ µ̂write · ω̂ · π̂]

Figure 5.6: Abstract semantics capturing the suffix of execution that reaches a defect. When the abstract

history models the initial, empty history, a witness has been found.

The concretization of abstract execution histories ω · θ |=Ω ω̂ defines the concrete message histories

reaching the defect. First, the base case of okhist concretizes to every realizable message history in Ω.

Next, the concretization of ω · θ |=Ω new x̂ ↠ ω̂ holds if the value corresponding to x̂ in θ is not in the

message history and the message history is in the abstract message history ω̂. Finally, ω · θ |=Ω m̂ ↠ ω̂

has the definition discussed earlier with the background on message histories. This is connected with the

memory of the application and the separation logic earlier with the final concretization judgment over the

entire program state σ · θ |=Ω σ̂. Valuations θ ensure that the concrete values assigned to abstract values are

consistent between the parts of the abstract state. Additionally, each new x̂ in the abstract execution history

must restrict the memory such that values created in the future are not referenced.

The a-new judgment requires that the variable x points to some value x̂ in the post state and combines

a new x̂ with the abstract execution history in the post state. Similar to the judgments in section 5.2, we
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ensure that the variable is not in the live portion of the post-state. Based on the definition of concretization,

this ensures that the value is not in the abstracted message history or memory. a-msg cmd relies on an abstract

message transfer ⊢ [̂µread · π̂]cmsg[̂µread ∗ µ̂write · π̂, m̂] that relates an abstract message m̂ to the memory

that was read and written. We assume a soundness condition for these abstract message transfers: If ⊢

[̂µread ·̂π]cmsg[̂µread∗̂µwrite ·̂π, m̂] and µread·θ |= µ̂read ·̂π then ⟨µread, cmsg⟩ ⇓ ⟨µread⊎µwrite,m⟩ and µread⊎µwrite·θ
′ |=

µ̂read ∗ µ̂write · π̂ and m · θ |=θ′ m̂ for some θ′.

Theorem 10 (Abstract Sequence Command Sound). If ⊢ [σ̂] cs [σ̂] such that σ · θ |=Ω σ̂ then ⟨σ, cs⟩ ⇓
Ω σ′

and σ′ · θ′ |=S σ̂ for some θ′.

Similar to our discussion on the background, the includes initial of the abstract execution histories

may be encoded into first order logic. To handle each new in the abstract execution history, we can keep a

set of logic variables that must be created in the future. For each previous message, we add a conjunction

that each argument must not be equal to each future value. Similarly, we add a constraint for each new value

returned that it cannot be equal to any future new (i.e. new cannot return the same value twice). Deciding

if an abstract execution history includes the initial state can be done precisely since the imprecision in the

encoding discussed earlier is with respect to the prefix. An abstract execution history includes the initial

state if and only if the encoded SMT formula is satisfiable when the message history length is zero.

Explanation of Event-Driven Defects.

Once an alarm is found where the abstract state includes the initial state, we can find an explanation

of the sequence of events leading to the defect. A satisfying interpretation of the SMT encoding will have

assignments to each logic variables effectively giving us an example θ as used by the concretization. From

there, we may unroll the abstract execution history one message at a time substituting the logic variables

retrieving an example of the boundary invocations, calls to new, and associated values that reaches the

defect. If we assume that new can return an arbitrary value each time it is called as long as that value has

not been returned before, and the code uses our fragment of Java, the execution sequence will correspond to

a real execution reaching the defect.
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5.4 Empirical Evaluation

In this section, we evaluate the ability of our techniques to find and explain defects in event-driven

programs. We implement our techniques in a tool called WiStoria which targets the Android platform as

a case study for event-driven programming models. In particular, we evaluate WiStoria on the following

questions:

(1) RQ1 Encoding Common Runtime Problems: Is our abstract domain able to represent the states

under which common runtime issues in Android applications occur?

(2) RQ2 Producing Realistic Execution Histories: Are we able to produce realistic message histories

for these problems explaining how a particular Android application reaches the problem?

5.4.1 Benchmarks

To evaluate WiStoria, we construct a benchmark of common bugs encountered by developers when

working with Android. We chose these benchmarks by combining the most common runtime defects listed

by three blog posts [81, 37, 128].

In order to obtain representative samples of each defect while minimizing our selection bias, we

ask ChatGPT [95] to generate examples of each defect. ChatGPT generates responses based on patterns

it has learned from training data. The exact training data used for ChatGPT is not published, but it is

likely to include examples, conversations, and questions about Android development. Therefore, we believe

these examples to be reasonably representative of how such defects would occur when faced by typical

developers. For each defect, we prompt ChatGPT with “Give me an example of ...” where ... is a short

description of the defect. We had to avoid two kinds of ChatGPT failures: (1) In some cases, ChatGPT would

give us unrealistically simple examples of defects such as setting a variable to null and then immediately

dereferencing the variable. To avoid this, we sent the prompt again with “non-trivial” added. (2) Several

benchmarks were not actually defective, in which case we would regenerate the response. The number of

times we had to regenerate each benchmark is listed in the “GPT Generations” column of Table 5.1. In most

cases, we found that the first response from ChatGPT was sufficient, and if it was not, then we did not need



130

to regenerate much before obtaining a good benchmark. Further details on the prompts given to ChatGPT

can be found in Appendix B.

We then turned the code examples into compilable applications manually. This consists of taking

the application code and adding the necessary additional files such as XML resource files and build files,

producing an Android application which can be compiled and run. In total, we generate 11 benchmarks,

which we describe briefly below.

Bitmap Mishandling: is when the application loads multiple large bitmaps into UI objects simulta-

neously. This is a problem because storing and manipulating these images slows the app, creating a poor

user experience. We precisely define bitmap mishandling as loading two large images simultaneously into

the user interface. Device Configuration: As a part of its lifecycle, an Android Activity may be destroyed

and then later recreated. Before its destruction, a callback is invoked which allows the Activity to save

its state, which is passed as an argument to its onCreate method when/if it is created later. If a devel-

oper does not leverage this, data may be lost if an application is suspended and later resumed. Formally,

we can encode this as an Activity having its onDestroy method invoked before any state is saved using

putString. Device Compatibility: issues arise as Android is a constantly evolving framework, where

APIs may be deprecated over time. Such changes may be in response to in hardware changes, security

improvements, and more. Dialog Origin: Applications may show dialog boxes to the user for a variety of

reasons, such as to draw attention to something important. When an Activity or Fragment is destroyed,

it must first dismiss any dialog windows it has created, or an exception is thrown as the window is leaked.

Formally, this can be stated as an Activity a having onDestroy invoked, when some dialog d exists such

that d.show(a) was invoked, but no call to dismiss was encountered before the Activity was destroyed.

Execute Twice errors occur through the misuse of the ASyncTask interface. A task may be executed once

and only once, and subsequent calls to execute will cause an IllegalStateException because the task

is already executing or has already executed. Formally, if a task has had execute invoked, it is an error if

the same task has already invoked execute. Fragment Lifecycle: Fragments are UI components which

are attached to other UI components such as Activities. Fragments have their own lifecycle independent of

an Activity, which can lead to issues if applications manipulate them without considering their lifecycle
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state. In particular, memory leaks can arise if a Fragment stores a reference to a View, and does not prop-

erly dispose of it when the View is destroyed. Inefficient Network: calls can lead to significant lag, as well

as resource usage in Android applications. For instance, if an application makes a network call every time

the Activity resumes, the application will make several calls if a user opens and closes the app frequently,

even if there is no need to refresh the data, slowing the application and consuming more data than needed.

If a library such as Volley is used, we can express this as a new RequestQueue being made when one has

already been made previously, instead of reusing it. Long Running Task: The main thread of an appli-

cation is responsible for the rendering of the UI. If a long-running process begins on this thread (such as

processing bulk data), the UI can freeze from the perspective of the user. This can be encoded as witnessing

an observable being attached to the thread when an Activity has not finished its onCreate call. Memory

Leak: On top of standard memory leak scenarios, Android applications can exhibit memory leaks due to the

lifecycles of Activity and Fragment components. When these are destroyed, any other components that

may be able to reference them need to be handled, otherwise they cannot be garbage collected. In general,

the Android framework denotes when an object should be disposed of through callbacks such as onDestroy

or onDestroyView, and not properly handling these callbacks, can lead to leaks. Similar to the Fragment

Lifecycle case, an example of this is a field pointing to an object whose onDestroy method was previously

invoked. Null Pointer Exceptions: are common in many programming models, but in event-driven systems

these errors can additionally arise from interactions between callbacks and callins, such as a callback setting

a field to null, and another callback expecting the field to be non-null. View Hierarchy: Android applica-

tion UIs are specified via XML. Deeply nesting View objects in an application’s UI can lead to performance

loss.

For each of these defects, we list statistics and the suitability of WiStoria in Table 5.1. First, the

number of callbacks and callins (CB and CI) are listed in the table to give a sense of how much of the

Android API each benchmark depends on. Next, we list the number of lines in each benchmark. After that,

we list whether reasoning about the defect or fix relies on understanding multiple callbacks. For 9 out of the

11 benchmarks we found that callbacks were central to the defect in question. Finally, we list whether we

can represent the error condition using the execution history and our fragment of separation logic. We found
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Problem GPT Generations CB CI tot msg lines Multi-CB WiStoria
Bitmap Mishandling 1 6 8 14 73 yes yes
Device Configuration 1 2 3 5 47 yes yes
Device Compatibility 1 5 7 12 64 no no
Dialog Origin 1 3 4 7 68 yes yes
Execute Twice 2 2 2 4 25 yes yes
Fragment Lifecycle 2 4 7 11 80 yes yes
Inefficient Network 1 4 3 7 95 yes yes
Long Running Task 2 2 6 8 44 yes yes
Memory Leak 2 3 1 4 22 yes yes
NullPointerException 3 2 7 9 28 yes yes
View Hierarchy 1 - - - - no no

Table 5.1: A list of common runtime problems in Android applications acquired from online blog posts.
The first column contains a name for the defect (described further in the evaluation text). We then list the
number of callbacks, callins, total messages, and lines in each benchmark. The ”Multi CB” column lists
whether reaching the error depends on state from multiple different callbacks. The WiStoria column captures
whether we can write down the property for WiStoria using CBCFTL and our fragment of separation logic.

that only 2 of the benchmarks could not be expressed by our tool. In the first case, Device Compatibility

was not applicable to our tool since the problem was caused by the set of objects that were imported. In the

second case of the View Hierarchy, the benchmark used an XML configuration file to set up the views and

analyzing configuration files is outside of the scope of our tool.

In Table 5.2, we list the conditions under which each benchmark will produce an error. Some bench-

marks, such as Execute Twice, can be succinctly expressed purely in CBCFTL, whereas others, such as

Fragment Lifecycle, require both temporal and state constraints to occur. The CBCFTL components de-

scribe the sequences of callins and callbacks necessary to witness the error, and state constraints are neces-

sary when particular variables need certain values, such as being null. The bottom line result is that for 9

out of 11 of these benchmarks we can express the error conditions.

5.4.2 Producing Realistic Execution Histories

Next, we evaluate our ability to find realistic execution histories with WiStoria given an adequate

CBCFTL definition of realizable message histories. We define a realistic execution history as a sequence

of events that could happen at runtime, given the correct scheduling and timing of external events. In order
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Benchmark Encoding
Bitmap Mishandling ciexn v.setImageResource( )� O ci v.setImageResource( )

Device Configuration cbexn a.onDestroy()� cb a.onCreate() NS ci putString(s)
Dialog Origin cbexn a.onDestroy()� ci d.dismiss() NS ci d.show(a)
Execute Twice ciexn t.execute()� O ci t.execute()
Fragment Lifecycle f .root 7→ v ∧ O cb f.onDestroyView() ∧ O cb f.onCreateView(v) ∧ O v = ci inflate()
Inefficient Network ciexn newRequestQueue(a)� O ci newRequestQueue(a)
Long Running Task ciexn o.putString( )� cbret a.onCreate() NS cb a.onCreate()
Memory Leak f .outer 7→ v ∧ O cb v.onDestroy()
Null Pointer Exception s 7→ null

Table 5.2: Error conditions for each benchmark. For error conditions where a message is called at the wrong
time, we give a specification of an error result similar to the overview example. The exn is used to generally
indicate a message occurring in an order that results in a defect (note that many of these benchmarks do
not explicitly throw exceptions). For error conditions about the memory state, we specify an error condition
with separation logic and temporal formula.

to objectively determine if the execution histories are realistic, we record runtime traces of the defective

benchmarks in the Android emulator and determine if removing unrelated events and renaming addresses

is sufficient to match the execution histories generated with WiStoria. To compare our results to the current

state-of-the-art in bug finding, we run both Infer [40, 22] and Pulse [74] on our benchmarks and record

whether an error was reported. The bottom line results are that WiStoria was able to produce realistic

execution histories for all 9 of the benchmarks discussed earlier. In comparison, Infer was only able to

detect one defect and Pulse did not find any.

We first generate the execution histories for each benchmark using WiStoria. Since our tool needs

a specification of realizable message histories, we added CBCFTL history implications as needed to avoid

un-realizable message histories. To give an idea of the size of the CBCFTL history implications, we list the

number of messages specified in the “specified messages” column. Next, we report whether we were able to

reach a realistic execution history with the “realistic” column. Finally, we report the length of the execution

history first in number of callbacks (CB), then in callins (CI), and finally total messages (tot).

In order to generate the runtime traces used for comparison, we added message logging statements to

each app at the beginning and end of each callback in the application as well as after each callin. Each of

these message logging statements records the following to the terminal: the method name, type of message

(callback, callback return, or callin), as well as the values of each argument. We additionally log each call

to new along with the return value. In the case of defects involving the memory state, we also log the
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relevant memory state at the defect location so that we may look at the log and determine if the failure was

reached. We then ran each benchmark app in the Android emulator executing the events corresponding to

the execution history generated by WiStoria. Statistics for these runtime traces are listed in Table 5.3. We

first report how many attempts it took us to witness the defect under the column “attempts”. Next, we report

the average length of the recorded trace (again listing the number of callbacks (CB), then in callins (CI), and

finally total messages (tot)).

Problem WiStoria Runtime Instrumentation

specified realistic length attempts avg len
msg(n) (y/n) CB(n) CI(n) tot(n) (n) CB(n) CI(n) tot(n)

Bitmap Mishandling 7 yes 5 9 17 1 15 32 54
Device Configuration 4 yes 2 0 2 1 2 3 5
Dialog Origin 3 yes 2 4 8 2 4 6 14.5
Execute Twice 5 yes 3 2 6 2 9.5 15.5 26
Fragment Lifecycle 4 yes 3 5 9 1 6 7 14
Inefficient Network 4 yes 2 5 7 1 5 18 32
Long Running Task 3 yes 1 2 3 1 2 6 8
Memory Leak 3 yes 3 1 6 2 5.5 2.0 11.5
NullPointerException 6 yes 2 7 13 1 2.0 7.0 13.0

total 39 9 23 35 71 12 51 96.5 178

Table 5.3: Execution histories generated by WiStoria and runtime instrumentation. For WiStoria we first
list the size of the CBCFTL specification (specified msg), then if the history is realistic (i.e. can we remove
unrelated events and match the runtime history), and finally the length of the history. We then list the number
of attempts to reproduce each defect on the Android emulator as well as the lengths of the recorded histories.

The bottom line result is that WiStoria was able to produce realistic execution histories for each

benchmark. In many cases, we were able to take history implications already written for the evaluation of

Meier 2023 [89] reducing the burden of manually specifying the framework. When history implications

did not previously exist, we developed them based on the documented behavior of the Android framework.

Overall, the number of messages we had to specify was small compared to the number of messages that the

application could emit (comparing the specified msg column with total msg from Table 5.1). In addition to

being realistic, we found that in all but one case, WiStoria was able to produce shorter execution histories

than the runtime method. We speculate that such shorter histories would be more useful to a developer trying

to understand and fix a defect.

In comparison to Pulse and Infer, we note that WiStoria was able to find many more of the defects.
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Problem Infer Pulse
Bitmap Mishandling no no
Device Configuration no no
Dialog Origin no no
Execute Twice no no
Fragment Lifecycle yes no
Inefficient Network no no
Long Running Task no no
Handling Failures no no
Memory Leak no no
NullPointerException no no

Table 5.4: Here, we summarize the results of Infer and Pulse on the benchmarks. Infer successfully detected
the defect in Fragment Lifecycle and Pulse did not find any of the defects.

However, it is worth pointing out that our tool requires a much higher burden of manual specification of

framework behavior. While this specification work can be applied across multiple applications running on

the same framework, both Infer and Pulse are fully automatic. Finally, we note that neither Infer nor Pulse

produce an explanation of how the defect occurs. It is also worth pointing out at this point in the discussion

of the results that, ChatGPT was unable to produce specific explanations for the order of callbacks for these

examples. Responses to multiple queries like “what order of callbacks produce the null pointer exception

in this example” resulted in responses that were not specific to the benchmark itself but rather discussed

general aspects like the Fragment Lifecycle. We believe that the explanation in the form of an execution

history is a distinct advantage of WiStoria.

5.4.3 Threats to Validity

Our threats to validity consist of the application selection process, the precision of the framework

model used to find witnesses, and the fragment of the Java language we support. To select applications for

testing, several blog posts were consulted. These blog posts may not necessarily fully capture the experi-

ences across a broad range of developers and event-driven frameworks. The problems discussed in the blog

posts were then given to ChatGPT to generate representative examples of the bug, which were then com-

piled into the benchmark applications used. While this in theory gives benchmarks that are representative

of a large amount of training data, we recognize that there is a chance that the data may be distorted by the
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large language model [14]. However, based on manual inspection, we believe the benchmarks to be reason-

able. Another potential evaluation issue is the framework model used in finding traces. Since our tool takes

handwritten specifications, there is a chance that we may not sufficiently restrict framework behavior. To

the best of our knowledge, our specifications capture the behavior in the documentation but undocumented

difficulties such as the finish behavior in the overview exist. Finally, we implemented our tool over a

subset of the Java language meaning that further development may be needed to fully under-approximate

the behavior of the framework. However, we found the subset of the Java language that we support to be

sufficient for these benchmarks.

5.5 Related Work

Incorrectness Logic is a formalization of proving reachability of locations or defects in applications

using hoare logic [93]. As an extension, incorrectness separation logic extends these ideas to local reasoning

about heap properties [108]. Finding real bugs in programs with incorrectness logic [74] introduces the

notion of manifest errors to define that a method must have a bug under any calling context. However,

none of these techniques are able to reason about the state between callback invocations or reason about

the history of execution. Finally, work has been done on incorrectness logic over object-oriented languages

and frameworks [78] which have a close relation to such event driven frameworks but does not handle the

missing framework code.

Goal-directed analysis [17, 16] presents an efficient and precise way to reason about states that may

reach such a location of interest in able to prove safety. Specifically, this technique analyzes the program

with respect to “what may lead to a crash at this location” avoiding the need to compute an invariant over

the entire program.

5.6 Conclusion

This paper has introduced a novel approach for the discovery and explanation of defects in event-

driven applications using history-aware incorrectness logic. By focusing on the specific execution histories

that lead to defects, we have developed a method that not only identifies the sequences of callbacks and event
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interactions responsible for failures but also highlights the minimal set of memory interactions necessary

for reaching these defects. Our approach provides a clearer insight into the causal relationships within the

complex behaviors of event-driven systems, making the debugging process both more efficient and effective.

The implementation of our method in the WiStoria tool has demonstrated its practical value in com-

monly encountered runtime defects, successfully detecting and providing explanations for common defects

encountered in event-driven programming. The results from our evaluations indicate that focusing on rele-

vant memory and understanding event sequences can significantly improve the detection and resolution of

defects.



Chapter 6

Abducing Targeted Models of Event-driven Frameworks For Verification

In this chapter, we present a technique for synthesizing framework models that are precise enough

to prove a safety property such as the fixed code from the overview (Figure 2.1) but sound with respect to

known reachable locations such as the crash in the buggy version of our example Figure 1.1 or the cancel

button’s click listener. This technique allows a developer to start with a very loose framework model and

automatically refine how each callback (or other back message) may be restricted. The key challenge is

that the space of framework models is huge, first because of the number of possible callbacks and callins

(e.g. Antennapod implements nearly 4000 callbacks), and second because of the quantified arguments that

connect messages together within the history implications making a CBCFTL framework model.

To address the challenge of synthesizing framework models for event-driven frameworks, we start

with a technique for searching CBCFTL models based on syntax guided synthesis in section 6.1. Next, we

identify a key property of the handwritten models in the previous chapters: these models are connected. By

only exploring connected models, we can start to trim down the space of possible framework models. After

that, we present message graphs, a technique to quickly filter expansions of the framework model that will

not progress the synthesis towards a sufficiently sound model that proves the safety property. Finally, we

show how this technique can be used to synthesize the framework models needed to prove the benchmarks

in chapter 4.
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6.1 Exploring the Space of Framework Models with Syntax Guided Synthesis

In this section, we present a method to effectively enumerate candidate framework models starting

with the syntactically smallest models and growing in complexity. At a high level, we have completed the

search for a framework model S when we can prove the target issue safe (i.e. ⊢Sp ℓ : ⊤ unreach where ℓ and

p are the target issue) and each reachable location can be witnessed (i.e. ⊢Sp ℓ reach for each p and ℓ in the

set of known reachable issues).

Figure 6.1 shows the modified CBCFTL syntax with holes. We use
■

S to distinguish a framework

model that is not yet completed from a framework model that can be used for the previous two sections.

Each hole ■ω̃ is a location where some sub-formula may be substituted in order to search for a framework

model satisfying the reachability of the issues. The other kind of hole is a message hole ■m̃ which allows

one message to be substituted. This restriction on where holes may be in the temporal formula means that

obtaining an upper bound for a formula is straightforward. Each ■ω̃ can be replaced with true and each

■m̃ NS m̂becomesO m̂. Similarly, a lower bound to the framework model may be obtained by replacing each

■ω̃ or ■m̃ NS m̂ with false.

issues ir ::= p · ℓframework model
■

S ::= true |
◦
s ∧

■

S history implication
◦
s::= m̂�

◦

ω̃

temporal formula
◦

ω̃::= ■ω̃ | O m̂ | HN m̃ | ■m̃ NS m̂ | m̂2 NS m̂1 |
◦

ω̃1 ∧
◦

ω̃2|
◦

ω̃1 ∨
◦

ω̃2| true | false

Figure 6.1: Syntax of the target and reachable issues as well as the CBCFTL language with holes. Each

issue consists of an application and a target location (the crash shown in our introduction may be compiled

into such a location). CBCFTL is designed to be in negation normal form to make searching for candidate

framework models easier allowing the upper and lower bound of each candidate model to be computed

easily by substituting true or false for holes.

In order to focus the algorithm on the portions of the framework model that are the hardest to write, we

start with a framework model containing holes such as ci l.onClick()� O b = ci a.makeButton(l) ∧ ■
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from subsection 2.5.1. This framework model corresponds to the user knowing how to make a button

and register the onClick listener but not knowing how setEnabled or finish affect the clickability of

a button. Such a starting point saves time with the synthesis and reduces the total number of reachable

locations needed.

Figure 6.2 shows the high level steps for synthesizing a framework model. This synthesis is imple-

mented as a worklist algorithm over the graph of candidate framework models. A framework model graph is

defined by an initial node consisting of the initial location and subsequent edges to new nodes are captured

by the Step method which takes a candidate framework model and returns the set of models where one hole

is replaced with one AST production (e.g. m̃� ■ω̃ could be expanded to m̃� ■ω̃ ∧ ■ω̃). This algorithm

is initialized with a set of known reachable issues R and a target issue t. Each issue consist of an application

p and a locations ℓ. The queue of the worklist is initialized with the starting framework model with holes.
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1: R is the set of reachable issues.

2: t is the target issue.

3: Initialize the priority queue W with the initial CBCFTL model

4: while W is not empty do

5:
■

S ← extract next model from W

6: if
■

S has no holes then

7: S ←
■

S ▷ With no holes we have a normal CBCFTL model

8: if Historia(S , t) and Wistoria(S ,R) then

9: return S ▷ Done, display the CBCFTL model

10: end if

11: else
■

S has holes

12: underApproxModel← LowerBound(
■

S )

13: overApproxModel← UpperBound(
■

S )

14: if Historia(underApproxModel, t) and Wistoria(overApproxModel,R) then

15: NewModels← Step(m)

16: W ← Filter(NewModels, t,R)

17: end if

18: end if

19: end while

Figure 6.2: Pseudo code for the work-list algorithm to synthesize the framework model. W is a work list in

the form of a priority queue that returns the syntactically smallest models that does not have holes first. If

all models contain holes, then it chooses the syntactically smallest model. Historia(m, t) takes a model and

the target issue and returns whether it is safe. Wistoria(m,R) takes a model and the reachable issue set and

returns true if each are reachable (this method may time out and return false).

The worklist algorithm runs as long as it has not found a suitable framework model and there are

candidate framework models in the queue W. As a result, attempting to prove an unsafe issue can either
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lead to a failure to synthesize a model (the queue is empty) or a timeout. The first step of the while loop is

to extract a model
■

S from the queue as shown by Line 5.

This queue must be a priority queue. There is an infinite number of possible framework models and

the smallest ones tend to be better for performance and the number of reachable locations required for a

sound result. We use a priority queue that prioritizes framework models that have no holes first. If all the

framework models have holes, then the queue prioritizes the candidate framework model that is syntactically

smallest. The syntactic size is measured by counting the AST productions in each history implication.

For a framework model that does not have any holes (i.e. it is syntactically a normal CBCFTL formual

S ), we may call the Historia tool on the target issue and Wistoria on each reachable issue. If Historia is able

to prove the target issue and Wistoria can find reachable paths to each known reachable issue, then we are

done. Line 9 returns the final framework model to the user for inspection. If this model is sound then the

application is proven. If the model is not sound, then there are not enough reachable locations. However, as

we will see in section 6.4 the number of reachable locations needed tends to be small.

Alternatively, if the framework model extracted from the queue on Line 5 has holes, then the search

proceeds. First, the framework model is checked to see whether any expansion of the holes is sufficient to

prove the target issue. This is done by first computing the framework model representing the lower bound of

message histories that can result from expanding holes in the current model. We compute the lower bound

operation with LowerBound method and then call Historia on the resulting model with the target issue.

Similarly, we may check whether any expansions of the framework are consistent with the known reachable

issues. This is done by computing the UpperBound of the framework model and then running Wistoria on

the result with each reachable location. If either of these operations fails, the candidate framework model is

discarded.

The Step function enumerates each syntactic expansion of the framework models as well as the pos-

sible aliasing relationships with existing messages. For example, stepping the candidate framework model

ci l.onClick()� O b = ci a.makeButton(l) ∧ (■ω̃ ∨ ■ω̃) results in a set containing ci l.onClick()�

O b = ci a.makeButton(l) ∧ (HN ci a.setEnabled(false) ∨ ■ω̃). For now, assume that this method

enumerates everything including setEnabled(a), in the implementation it is combined with the Filter
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function described next.

At this point, it is clear that the search space is huge. There are numerous callbacks and callins

that need to be considered and this is only made worse by the choices of aliases between arguments of

the model. As a minor optimization, we first merge models that have already been searched. For example

ci l.onClick() � O b = ci a.makeButton(l) ∧ (HN ci a.setEnabled(false) ∨ ■ω̃) is equivalent to

ci l.onClick() � O b = ci a.makeButton(l) ∧ (■ω̃ ∨ HN ci a.setEnabled(false)). Therefore, we

represent all framework models in a normal form allowing many equivalent models to be syntactically

merged. Next, we describe the more interesting optimizations that make this approach work in practice.

6.2 Connected Framework Models

From the experimental evaluations in all previous chapters, we have observed an interesting pattern

in framework models: they are all connected. A connected framework model has a path connecting shared

arguments through each message in each history implication. In our motivating example, this connectedness

is how we know which button is associated with which onClick listener. In theory, it is possible for a non-

connected model to be useful (e.g. if there was an exit() method that immediately stops everything).

But, we have not observed such a model to conform to the actual framework behavior (e.g. most exit like

methods are more of a suggestion to eventually exit and actions can still occur after invocation).

The first job of the Filter method is to reject any framework model that is not connected. This is

done using a graph search algorithm visiting each method in a history implication ensuring that at least

one argument connects. For example, History Implication 1 starts with cb l.onClick(), finds the first

connection to b = cb a.makeButton(l) through l, the next connection is with the three occurrences of

setEnabled through b. If such a path cannot be found, the Filter method removes the framework model.

6.3 Targeting the Framework Models Using Message Graphs

The final and most important optimization ensures that each clause added to a history implication in a

CBCFTL formula could be true under some issue. This is done using a pointer analysis over the application-

only transition system that we call a message graph. Specifically, we determine when arguments in a pair of



144

messages could alias one another along an abstract message history reaching a target location. If arguments

cannot alias one another, then adding a temporal operator to a history implication is not useful towards

the goal of proving the target issue or admitting known reachable issues. In subsection 2.5.1 the history

implication ci l.onClick()� O b = ci a.makeButton(l) ∧ O ci l.setEnabled(false) is connected but

un-targeted because the temporal operator O ci l.setEnabled(false) can never be true because the listener

object l used for onClick cannot alias the button object used for setEnabled. The lack of aliasing between

l and b can be determined using a pointer analysis and looking at the locations that may emit a setEnabled

or onClick message in each application.

Constructing the Message Graph

The message graph is generated by first building a pointer analysis for the Android application. This

pointer analysis is a flow-insensitive whole program analysis, therefore we need a “main” method sufficient

for an entry point. We construct this main method using a combination of techniques related to the applica-

tion only call graph [1, 2] and Jphantom [12]. Since we are using the flow insensitive Spark pointer analysis,

this main method does not need to preserve callback or instantiaton order. We build this main method by

creating a call to new for each object type that may be created by the framework (e.g. the RemoverActivity

which is instantiated via reflective object reference in the real framework). Each of these objects is written

to a single static “framework” field. After identifying all possible callbacks in the application, the main

method is appended with a call to each callback. Similarly, each callin on the framework is replaced with

code that writes each argument to the framework field and then returns a value from the framework field.

Since many of the framework classes are missing due to dynamic code loading, linking, native code, and

more, we search for any interfaces called by the application that do not have concrete method targets. For

each of these missing callins, we generate an artifical sub-class in the style of JPhantom but utilizing ap-

plication only instrumentation for the method bodies. In this way, we can create a pointer analysis where

the points to regions of each application variable over-approximate the runtime behavior of the framework.

We will use the pseudocode method MakeMessageGraph to refer to this process of generating the pointer

analysis.

The result is that we may now search the application for all methods that may be a callback and
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match them with the space of abstract messages. Similarly, the callins may be matched to call sites of

possible framework methods. We use the pseudocode method CanAlias to represent comparing two program

variables to determine if they may be aliased. In the previous analyses, these aliasing constraints are carried

along with the symbolic variables as abstract states are generated (similar to Thresher [16]). Therefore, we

can also use CanAlias on symbolic variables in abstract states.

Filtering the Candidate Messages

As the synthesis proceeds, we want to only consider models that may affect the reachability of an

issue. Models that consider aliasing not possible under any application within the set of issues or messages

that aren’t used do not help with the verification task. For example, consider a candidate model consisting

of a onClick happening if an unknown is true: cb l.onClick() � ■ω̃. We can immediately remove

messages where l appears in an argument that has no possible way of aliasing the receiver of onClick. For

example ci l.setEnabled(false) will always be false in this history implication because the listener object

l cannot alias the button objects obtained through makeButton based on the class hierarchy.

The real benefit of the message graph comes from combining the aliasing possibilities with the restric-

tions of message histories produced from issues. From the example message graph shown in Figure 2.11

it is possible for a onClick to alias a wide variety of message arguments. However, if we consider an

abstract message history reaching the “Cancel” button’s onClick listener, we reduce the search space sig-

nificantly. Specifically, the abstract message history cb ldis.onClick() ↠ ciexn t.execute() ↠ okhist

retains alias constraints for the ldis logic variable. If we search for the simplest history implication that de-

scribes the reachability of both the “OK” and “Cancel” button onClick callbacks, then makeButton is the

clear expansion for the history implication cb ldis.onClick()↠ ciexn t.execute()↠ okhist.

Specifically, we can see the different behaviors of a message with a possible aliasing relation versus

a message with no possible aliasing relations in the Quotient judgments form section 4.3. A message from

the CBCFTL formula may only match a message from the abstract message history, Match(m̃, m̂) if the

name and arguments are equivalent. However, if the pointer analysis shows that two arguments can never be

aliased, we know that the message may never match. For Temporal operators requiring positive messages

such as m̃ in O m̃ or m̃2 in m̃1 NS m̃2 an argument that can never alias means the clause will always be false.
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Such clauses are not useful in this search.

Similarly, it is not useful to consider negative temporal operators that can never be false through the

NotMatch(m̃, m̂) operator used in the Quotient judgments. Therefore, the message graph filtering is also

useful for the negative messages in temporal operators such as m̃ in HN m̃ and m̃z in m̃1 NS m̃2.

Since the judgment to determine if a history implication matches a message history uses an assign-

ment from CBCFTL formula variables to concrete values, θ from section 4.2, a Match(m̃, m̂) or NotMatch(m̃, m̂)

may evaluate to true due to an arbitrary chain of temporal formula. For example, the HN ci b.setEnabled(false)

clause may change meaning depending on the specific values associated with O b = ci a.makeButton(l).

cb l.onClick()�O b = ci a.makeButton(l) ∧

(HN ci b.setEnable(false) ∨ ci b.setEnable(false) NS ci b.setEnable(true))

Therefore, we inductively define relevance as an argument in the current message that is shared with

the target message or a shared argument with another message that is connected. This property is captured

using the Relevant method in Figure 6.3. Specifically, Relevant takes a history implication s, an issue set

I, and the current candidate framework model
■

S and returns true if each message can be connected using an

abstract message history for some issue ir, i.e. ConnectedThroughIssue holds for the two messages and the

issue.
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1: function Relevant(s, I,

■

S )

2: m̂target � ω̃ = s

3: for all m̃ ∈ ω̃ . m̃ is transitively connected to m̂target using ConnectedThroughIssue for some ir ∈ I

4: end function

5: function ConnectedThroughIssue(m̃1, m̃2, ir,
■

S )

6: p · ℓ ← ir ▷ get the application and location from the issue

7: G ←MakeMessageGraph(p)

8: find a Σ̂ such that Σ̂ ⊢
■

S
p ℓ : ⊤ ▷ invariant map from the over approx of the current model

9: find a ℓ : ω̂ · κ̂ · ρ̂ ∈ Σ̂ such that the initial state is included

10: find a m̂src, ϑ such that m̂src ∈ ω̂ and m̂src ≃ϑ m̃1

11: find a [x̂model 7→ x̂abst] ∈ ϑ such that MayAlias(G, m̃2, [x̂model 7→ x̂abst])

12: if any of the above cannot be found then

13: return false

14: else

15: return true

16: end if

17: end function

Figure 6.3: The Relevant method for determines if a history implication is relevant to the target issue or

reachable issues. As inputs, it takes a single history implication s, a set of issues I (both reachable and

target), and the current candidate framework model
■

S .

Specifically, ConnectedThroughIssue first finds an alarming invariant map using Historia Σ̂ ⊢
■

S
p ℓ : ⊤

and the upper bound of the candidate framework model
■

S . Within this invariant map there is an abstract

state ℓ : ω̂ · κ̂ · ρ̂ ∈ Σ̂ corresponding to the alarm because it includes the initial concrete state (i.e. the includes

initial procedure from section 4.3). Next, a message is found in the alarming history m̂src ∈ ω̂ that matches

the first message m̂src ≃ϑ m̃1 with some substitution ϑ. Finally, search the message graph for a message

that may alias the formula variable and constrained by the pointer analysis in the abstract message history
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using MayAlias. We leave the aliasing information implicit in the pure variable from the abstraction x̂abst.

However, it can be thought of as a set of reaching allocation sites. This is also constrained by the variable

shared between m̃1 and m̃2 named x̂model in the figure.

As illustrated by the abstract message history discussed earlier,

cb ldis.onClick() ↠ ciexn t.execute() ↠ okhist, the message that needs to be added to the framework

model may not be captured by the abstract message history from the alarm. Two messages need to be

added in order to expand the history implication cb l.onClick() � ■ω̃ into what is needed to prove

the fixed version of the application and reach the bug and the onClick listner for the “Cancel” button.

These messages are the b = ci a.makeButton(), cb b.setEnabled(true), and cb b.setEnabled(true).

However, the alarm does not show any of these messages. For this reason, the message graph is needed to

find the messages that may be emitted for refining the history implication.

The advantage of this technique is that the number of messages that need to be considered when

expanding a history implication may be significantly reduced. Additionally, the message graph technique

eliminates the majority of aliasing possibilities between arguments further reducing the space of candidate

framework models. However, there are a few other filters that we have found to be effective in making

framework model synthesis performant.

Additional Model Filtering

In addition to filtering framework models that rely on aliasing not possible in the issue set, there

are a few other classes of framework models that have been found to be not useful in the search. Our

implementation detects these classes of framework model and filters them out in the Filter method.

First, there are framework models that can be trivially shown to be equivalent to false. One class of

models is when a back message requires that the same back message has happened in the past. For example,

cb a.onCreate() � O cb a.onCreate() ∧ . . . effectively prevents the onCreate callback since each new

invocation of onCreate requires a previous one.

Another class of framework models that we avoid are models where an existentially quantified vari-

able only shows up in a negative temporal operator. For example, a framework model of the form

∀l.cb l.onClick()� ∃b.HN ci b.hideButtonWithListener(l) problematic since the temporal operator
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HN ci b.hideButtonWithListener(l) is always false as an arbitrary b instance can be chosen. Instead,

the framework model should have a “do not care” variable represented by in the history implication:

∀l.cb l.onClick() � HN ci .hideButtonWithListener(l). This is equivalent to universal quantifi-

cation over the b ∀l, b.cb l.onClick() � HN ci b.hideButtonWithListener(l) (the underscore and

universal quantification is discussed further in subsection 4.2.1 with symbolic messages m̃).

Finally, we avoid usages of the Not Since operator where the negative message has variables not in

the positive message. For example ci b1.setEnabled(true) NS ci b2.setEnabled( f alse) as opposed to both

messages having the b receiver in the original history implication. Avoiding this last class of framework

models is simply a heuristic based on the observation that “toggling” behavior typically does not span

multiple objects.

6.4 Empirical Evaluation

To evaluate our contributions, we implemented our techniques in a tool named Synthoria. Here, we

evaluate the possibility of verification of callback order sensitive assertions when the user of Synthoriais not

able to write a full model of the framework. In particular, we test the ability of our technique to (1) reject un-

sound framework models given an example of a reachable location and (2) efficiently search for a consistent

model of callback control flow that is sufficient to prove the fixed version of the application.

Implementation The abduction via program synthesis described in subsection 2.5.1 is implmented

via a work-list algorithm over candidate framework models. Message graphs from section 6.3 are con-

structed using the result of the instrumented application-only control flow graph and SPARK from the Soot

framework [76] described in subsection 2.5.1.

In this section, we ask the following research question:

Feasibility: Is it possible to abduce a sound framework model for real-world bug-fixes? Can we avoid

unsound framework models using a reasonable number of reachable locations?

To answer this question, we performed an experiment to test whether temporal constraints could be

synthesized to prove fixes of callback-order sensitive bugs. We use the benchmarks identified for evaluating

Historia (research question 2 in subsection 4.4.1). These benchmarks were selected by watching the issue
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trackers of popular open-source Android applications and selecting stack traces where the fix alters the

possible order of callbacks from the framework. We list these benchmarks in the first column of Table 6.1

by the app name (AP for Antennapod and CB for ConnectBot) and the pull request fixing the issue.

As mentioned by the overview, we can start with a framework model and search space based on partial

specifications. The header ”input” on Table 6.1 gives statistics on this template as well as the reachable

locations. This partial framework comes as a CBCFTL specification with holes where the user of our tool

does not know what to write. We refer to the CBCFTL specification with holes as a template. The table

captures the size and complexity of this template by counting the number of history implications in the

column ”specs”, counting the messages in the right-hand side of the history implications with ”msg”, and

finally, counting the number of variables that bind to objects in the ”obj” column. Next we show the set

of messages that were identified by the user of our tool as being relevant to the the holes in the history

implications and count these messages in the ”search msg” column.

As discussed in the overview, it is reasonable to assume that reachable locations could eventually be

drawn from logging systems such as Firebase that capture stack traces or other logging data. Due to the

current scalability of the Historia analysis, we provide programs and locations as unsound framework mod-

els are proposed by Synthoria. In addition to buggy versions of the applications as shown in the overview,

we add simple applications and reachable locations as needed. These are simple applications that contain

callbacks in the unsound proposed history implication and a finite application state that is updated as call-

backs are invoked. Intuitively, such locations could come from normal patterns in Android applications such

as initializing and using an object in separate callbacks. To measure how much runtime information was

needed to synthesize the model, we tracked the number of times we needed to add a reachable issue in the

first column.
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Issue learned model performance

template search added probability Historia Wistoria

specs msg obj msg models iss msg obj optim naive calls time calls time

(n) (n) (n) (n) (n) (n) (n) (n) (1/n) (1/n) (n) (s) (n) (s)

getAct[8] 3 3 4 5 8 9 3 1 3.17e-3 1.13e-4 11 13 63 25

execute[10] 3 3 4 2 22 5 3 0 1.98e-3 2.27e-4 29 2214 60 4239

dismiss[12] 2 4 3 4 3 10 1 0 2.50e-1 1.25e-1 5 735 27 9

finishnull 2 0 3 5 346 7 5 1 6.13e-6 8.87e-10 436 1675 1820 858

subsnull 6 10 10 3 9 2 2 1 1.05e-2 3.90e-4 11 569 14 8

total 16 20 24 19 388 33 14 3 492 5206 1984 5139

Table 6.1: Benchmarks demonstrating fixes for issues in widely-used open-source Android applications. We

were able to synthesize framework models sufficient to prove each fix and document the size of the starting

specification as well as the size of the learned model and the performance of the synthesis.

Discussion of the results The bottom line result is that we were able to use our synthesis approach

to complete holes in all 5 benchmarks. In general, we find that the number of issues is fairly small main-

taining the tractability of the problem. We never found a case where an unsound framework model was

proposed that we could not eliminate by writing an app with a known reachable location.

The next header ”learned model” describes the complexity of the specifications synthesized in com-

parison to the template. The ”added msg” column is the number of times the syntactic expansion of a history

implication added a single message. Additionally, we count the number of times a variable was added during

synthesis with the ”added obj” column.

In general, we found that the synthesis algorithm would never terminate if any single optimization

we described was turned off. This was primarily due to the extremely large search space of the problem.

However, another challenging aspect is that many candidate framework models can result in extremely long

runtimes from Historia. Fortunately, we found that almost every case of a proposed model that caused long

run times in Historia also did not correspond to reasonable behavior that could be implemented in an event-

driven framework. In order to evaluate how much of the search space is being cut down by the optimizations,
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we use the probability that random choices would result in the target framework model as a proxy for search

space size and compare this probability between the optimized version and a naive expansion of the holes

in the framework model. These probabilities are listed under the ”probability” header which is sub-divided

into the ”optimized” and ”naive” probabilities. We find that the optimizations typically cut the number of

bad choices down by an order of magnitude. In the extreme case of dismiss[12] , we find that these choices

are cut down by 4 orders of magnitude.

Finally, we discuss the performance of our technique. First, we count the number of intermediate

template framework models needed to be evaluated to get to the final model in the ”models” column. Since

the bottleneck is running the Historia analysis and corresponding reachability analysis, the fewer interme-

diate templates, the more efficient the technique will be. In general, we find the synthesis to finish with

at most a few hundred intermediate template models as compared to the models required if we did naive

enumeration up to the size of the model we found. The total time taken by Synthoria is within a second of

the sum of the time to run Historia and the reachability analysis (recorded in the ”historia time” and ”reach

time” columns). We also record the total number of calls to Historia and the reachability analysis in the

corresponding ”calls” columns. The average time per call is significantly lower than one would expect if

each call was made from scratch. In order to further improve the runtime, we aggressively cached arguments

and results for intermediate results within both the reachability analysis and Historia.

6.4.1 Threats to Validity

The biggest threat to validity is the assumption that suitable reachable locations may be found to

contradict each unsound intermediate model. However, we believe that this threat to validity is somewhat

mitigated by the fact that such reachability data may be recorded with existing instrumentation quite easily

through issue trackers, logging systems, and sampling profilers. Ideally, the extremely large amount of

code being run by many users is enough to provide the reachability data needed to avoid such unsound

models. The next threat to validity is the scalability of the technique. Future work is needed to both select

the reachable locations from a large corpus before running the goal-directed analysis and to improve the

runtime of the analysis itself. However, such work is beyond the scope of the current paper.
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6.5 Related Work

There are only a couple of techniques that attempt to model event-driven frameworks automatically

from observing the running system. Synthesizing framework models for symbolic execution is the closest

related work [68] that can passively synthesize framework modeling code. In this paper, runtime instrumen-

tation is used to record events triggered at the event loop and the corresponding callbacks. From there, the

sketch program synthesis technique [118] is used to fill in design patterns to trigger the callbacks. However,

the limitation to this work is that the synthesized framework model cannot capture properties about the code

that enqueues events such as the onClick described in the overview Figure 2.2. To overcome this limi-

tation, Droidstar [109] investigates an active learning approach using the L* algorithm [8] to learn a finite

state input/output automata known as a Mealy machine [116]. There are three limitations to the Droidstar

work: (1) Mealy machines are limited to a finite alphabet meaning that the relationship between multiple

interacting components cannot be effectively expressed. For example, the unbounded number of interacting

buttons and listener objects illustrated in Figure 1.2. (2) Since it is an active learning technique, runtime

instrumentation needs to be built that sends and receieves each kind of message that needs to be modeled.

Such instrumentation is not only difficult to write, but also may not capture the variety of values and other

contexts associated with such messages. (3) Active learning must be performed on each kind of device

and version of the framework to soundly represent the behavior across application users. Due to the large

number of devices, such repetition would be practically difficult. In contrast, our technique only needs crash

reports from these devices, a kind of data that is already logged in many applications. Similarly, there are

techniques that use recorded traces to mine type state like properties [48, 106, 132, 135]. However, these

techniques cannot handle the presence of callbacks.

Another class of framework modeling techniques directly summarize or augment the framework

source code to be directly analyzable [18, 25]. Such techniques showed promise when reasonable portions

of the Android framework could be obtained and analyzed. However, since these works were published,

the use of techniques that effectively “hide” framework code have seen increasing utilization in the Android

framework. These techniques include dynamically loaded code, native code, interaction with the operat-
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ing system, and interprocess communication. To make matters worse, the specific implementation of the

framework that these techniques utilize tends to change between devices, manufacturers, and age of the

device.

Similar to how simpler CBCFTL formula tend to be the best explanation to prove safety, there are

techniques that leverage techniques to minimize the complexity of assumptions. For example, the paper

“Specification Inference Using Context-Free Language Reachability” [13] uses a specification inference

algorithm to find a minimal set of assumptions proving an application to be free of data flow related security

issues.

Programming by Examples [56, 20] is a related idea where a program is generated by input output

pairs. Our technique builds on this as input output pairs are a program location and then a ”proof of unreach-

ability” a ”proof of reachability” or a ”I don’t know”. The main contribution of this paper over previous

programming by example techniques is the ability to correctly deal with under and over-approximation of

program analysis while additionally using domain specific information to prune the search space of can-

didate models. Our work can be thought of as a kind of angelic verification specific to event ordering

[31]. However, we add the important constraint that reachable locations must remain reachable under any

appropriate framework model.



Chapter 7

Conclusion and Future Directions

Over the last few decades, event-driven frameworks have evolved enormously. Considering early

computers such as the Xerox Alto with simple graphical user interfaces, events were limited to actions like

clicking on items, entering text, or serial communication. However, over the following 50 years, event

driven frameworks have taken over our lives. A modern cell phone has utilities to provide events for an

incredible variety of functionality. There are events that report biometrics for monitoring health metrics

such as SPO2 and heart rate. Other events can activate routines when a user enters a geographic area.

Further events report physical properties of the environment that were well beyond what anyone expected

even a decade ago. These capabilities will continue to improve with technology and the corresponding

event-driven frameworks will be the backbone of how applications interact with the world.

Alongside this rapid improvement in functionality, we have also seen an incredible need for event-

driven code to be secure and reliable. At the time of writing this dissertation, there is an explosion in

safety critical uses for applications. Companies are starting to experiment with phone linked smartwatches

that monitor for atrial fibrillation, low SPO2 and more. Pilots are switching out charts and manuals for

tablets. Even cars on the road are increasingly operated using a touch screen connected to an event-driven

framework.

At the same time, all of these systems run on a wide variety of different event-driven frameworks and

utilize varying hardware. This explosion in complexity and capability means that verifying correct operation

of these devices is going to continue to increase in difficulty. In particular, the added complexity from new

features, different event-driven frameworks, and varying behavior between devices will push the limits of
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our capability to verify safety in real-world applications.

In this dissertation, we have presented a basis for soundly modeling event-driven framework behav-

ior and using those models for program analysis in real-world Android applications. Then, to support the

ever-increasing complexity and variety of event-driven frameworks, we presented a method of automatically

synthesizing framework models. We have shown how this technique can target the properties that applica-

tions rely on for safety and how the resulting models can meet a high bar of soundness. However, there is

still much work to be done to make program verification a tool that developers can rely on. Next, we will

discuss the future directions that could develop this technology into a useful tool for real-world application

developers.

7.0.1 Future Directions

This dissertation lays a foundation for message-history based modeling and analysis in event-driven

software that enables the possibility of a wide variety of future work. These are a few of the research

directions that are particularly interesting.

Scaling Framework Model Synthesis

The first research direction is to scale our synthesis approach to handle observed runtime behavior

from crash reporting and logging utilities. Whereas we were able to synthesize framework models with 10

or fewer reachable locations, these locations were hand selected to demonstrate the unsound behavior. If the

algorithms behind this synthesis were more efficient, we speculate that hand-selection of reachable issues

would no longer be needed.

With over 3 billion active users of Android phones alone and logging utilities that report crashes

and other critical application events, there is an enormous amount of information about how event-driven

applications behave in the real world. The next major challenge is to utilize this information in a privacy-

preserving way to improve our models of how event-driven frameworks operate. Our motivating example

demonstrates why such data could be useful: rare behaviors of event-driven frameworks can cause software

to behave badly. We believe it is unreasonable for an application developer to keep track of such rare

behaviors. This is especially true for behaviors that may be specific to a particular piece of hardware or



157

version of the framework.

Improving the Expressiveness of Framework Models

Up until now, our framework models have been fairly targeted at properties that applications rely on

to avoid crashes such as buttons that may be enabled or disabled. Throughout the evaluation section, there

are many other examples of such toggling behavior such as canceling background tasks or the framework

indicating that an object is created or destroyed. Our fragment of temporal logic is well suited to modeling

and reasoning about such properties. However, There are many other frameworks that deal with specific

kinds of data that aren’t precisely expressible in CBCFTL or efficient when interpreting abstract states with

SMT.

The primary example of a property to express would be numeric properties where arithmetic opera-

tions matter. As the current theory and implementation are, it is possible to capture constant values such as

false in the message cb b.setEnabled( f alse). More specifically, constants are converted to uninterpreted

sorts and axioms (e.g. there exists true and false in the set of booleans and they are not equal). However,

it would be more difficult to express the behavior when numbers are involved. One such example would

be proving timing dependent properties of event-driven systems. In such a system, the time of arrival of

the event could be considered a parameter and safe operation may require that a subsequent callin happens

quickly or that a callback does not block the user interface thread for too long. Work has been done to model

timing dependent systems with approaches such as timed automata [3]. Extensions of these techniques may

prove useful for event-driven frameworks. Numeric properties may also be useful when considering con-

currency or distributed protocols that may rely on numeric relationships. As an example, distributed leader

election algorithms [49] often require operations such as “if my identifier is larger than the previous node

then perform a specific action”. It is also reasonable to imagine applications where floating point numbers

matter such as input from sensors. For example, a program monitoring someone’s heart rate or geographic

position may need to prove a safety property relating to the values reported in events.

In a different direction, it is also possible to imagine programs that depend on a more expressive

language of events. CBCFTL focused on a few temporal operators capturing messages that happened Once,

Not Since, or Have Not happened. However, there are event-driven systems that rely on events evolving
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in a more nuanced way. There is a large body of work on register automata, LTL with freeze quantifiers,

and more [34, 32, 35] One example would be terminal applications and serial connections often send data

in chunks of text. In such a system, each character could be considered an event making expressing more

specific properties important. An extreme example would be the G-Code communication protocol which is

used to tell a 3d printer or other computer controlled tool how to move. G-Code usually sends commands

like “move to a given location” or “set the temperature to 60 degrees”. However, G-Code can behave like

a programming language with conditional “goto” statements and variables. In such a case, the language of

events may need to be Turing complete.

Supporting Dynamic Languages

Another avenue of future work would be to support dynamic languages such as Javascript or Python.

Such languages are extremely popular in a wide variety of software systems including web pages, servers,

and applications running on phones. However, the software that truly motivates such extension of these

techniques is the Javascript based user interface on the flight control system of the SpaceX Dragon capsule

[120]. Work has been done to use the goal-directed analysis for Javascript applications [126].

One of the biggest challenges with extending the work in this dissertation to dynamic languages will

be the construction of call graphs and pointer analysis. Due to the nature of dynamic languages call graphs

and pointer analysis are significantly more challenging to construct [66, 121, 70]. Since our tool relies on

such pointer analysis and call graphs to scale, the performance and soundness will be a challenge when

analyzing applications in dynamic languages.

The Most Crucial Aspect: Software Engineering

Finally, the most crucial future work is the software engineering to integrate these techniques into

the workflows of real developers. It is well known that program analysis tools can be extremely helpful to

developers if used well. However, the process of integrating these tools into the workflows of developers is

extremely challenging [38]. False alarms pointing to defects that don’t exist can waste the limited and ex-

pensive time of developers. On the other hand, false negatives can mean that critical problems go unnoticed.

With the ever-increasing criticality of software in our daily lives, it is important that we explore every option

to improve the quality and safety of the computer systems that run our world.
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Appendix A

Appendix: Refuting Callback Reachability with Message History Logics

A.1 Assumptions of the Application-Only Transition System

In practice, the translation from a compiled application to the application-only transition system

makes some assumptions about the execution environment that we list in this section. These assumptions

simplify reasoning about concurrency, reflection, and library behavior. First, we assume that all callbacks

occur on the same thread (i.e., individual statements inside two separate callbacks cannot be interleaved

during execution). In practice, some callbacks do occur concurrently. For example, the callback passed to

Single.create(...) in the place of the ... is typically executed on a background thread. Specific kinds

of program analysis exist to address the interleaving caused by threaded concurrency, but that is out of scope

for our paper. Additionally, we do not consider exceptional control flow involving try/catch blocks.

For the application only transition system, we assume that the framework cannot directly modify

the app store except through the invocation of a callback. In theory, the framework may directly modify

fields such as this.act generating an execution not represented by the application only transition system.

However, such direct access is rare. Since the framework must be compiled without the application, any

method or field that the framework accesses must typically extend a type declared by the framework (e.g.,

Fragment which declares an abstract method onCreate). The only exception is reflection, which may be

used to access the app store such as the this.act field directly, but we assume such uses of reflection are

rare, as it breaks encapsulation. More commonly, the framework uses reflection to create instances of objects

such as PlayerFragment. Ali 2012 [1] coined the phrase separate-compilation assumption to describe

how a reasonable set of assumptions on framework behavior may be used to generate an application-only
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call graph. Our application-only transition system follows the same principle and is based on the same

assumptions.

As mentioned in the Overview (subsection 2.3.3), we assume callin invocations do not synchronously

call back to the app (i.e., a callin stays in framework code until it returns). This assumption is frequently

mirrored by other static analysis, such as Flowdroid [10], by framework stub implementations that do not

invoke callbacks. In general, we find that not many Android methods have synchronous callbacks. In fact,

none of our examples use a method exhibiting this behavior.

This assumption is reflected by the single ℓ−[ci x′md(x)]� ℓ′ boundary transition. Our boundary

stacks are degenerate here in that they will only ever have at most one activation k (for the active callback).

The boundary stack κ is conceptually the subsequence of the run-time call stack corresponding to boundary

transitions (i.e., the pending calls alternating between callbacks and callins), which ensures that the message

history consists of matching calls and returns.

One can extend the language to support synchronous callbacks by splitting the callin invocation

boundary transition in two: one for the callin invocation into the framework (i.e., from ℓ to Fwk) and one for

a call return back from the framework (i.e., from Fwk to ℓ′), analogous to callback invocations and callback

returns. Note that if synchronous callbacks can be soundly modeled as asynchronous ones, then it is also

unnecessary to add the complexity of synchronous callbacks (which is generally the case for Android).

A.2 Proofs for Message History Program Logic

In this section, we prove the theorems for the message history program logic (MHPL) that we describe

in section 4.1. We make the following assumptions:

Assumption 1 (Application Step Soundness). If Σ̂ ⊢ t and ⟨σ′, t⟩ ⇓ σ and σ |=S Σ̂(post(t)) then σ′ |=S

Σ̂(pre(t)).

Providing a sound specification is the responsibility of the user of Historia.

Property 1 (All Prefixes are Realizable). If ω; m ∈ Ω then ω ∈ Ω.

Property 2 (Sound Excludes Init). If ⊢S σ̂ excludesinit then σinit ̸|=S σ̂.
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Property 3 (Entailment Soundness). If σ̂ ⊢S σ̂
′ and σ |=S σ̂

′ then σ |=S σ̂.

The sound excludes init Property 2 is a consequence of the sound encoding of message history pro-

gram logics section 4.3, a sound first order logic encoding, and a sound SMT solver.

σ |=S σ̂ loc1 : µ |=S loc2 : µ̂ iff loc1 = loc2 and µ |=S µ̂

µ |=S µ̂

µ |=S µ̂1 ∨ µ̂2 iff µ |=S µ̂1 or µ |=S µ̂2

ω · κ · ρ |=S ω̂ · κ̂ · ρ̂ iff there exists θ such that ω · θ |=S ω̂ and ρ · θ |= ρ̂ and κ · θ |= κ̂

ρ · θ |= ρ̂

ρ · θ |= ⊤ ρ · θ |= ρ̂1 ∗ ρ̂2 iff dom(̂ρ1) ∩ dom(̂ρ2) = ∅ and ρ · θ |= ρ̂1 and ρ · θ |= ρ̂2

ρ · θ |= x 7→ x̂ iff ρ(x) = v and θ(x̂) = v ρ · θ |= ρ̂1 ∨ ρ̂2 iff ρ · θ |= ρ̂1 or ρ · θ |= ρ̂2

κ · θ |= κ̂

κ · θ |= ⊤ κ; cb md(v) · θ[x̂ 7→ v] |= κ̂ • cb md(x̂)

σinit →
∗Ω

p σ

c-transitive-step

σ = σ′

σ→∗Ωp σ
′

c-trnasitive-step-inductive

σ→∗Ωp σ
′′ σ′′ →Ωp σ

′

σ→∗Ωp σ
′

Figure A.1: Extended concretization and transitive step for application only transition system.

Lemma 3.1 (hoare triple soundness) If ⊢ {σ̂pre} b {σ̂post} and ⟨σpre, b⟩ ⇓Ω σpost such that σpost |=S σ̂post

and Ω ⊆ ΩS , then σpre |=S σ̂pre.

Proof of Lemma 1. By cases onD = ⟨σ, bpre⟩ ⇓
Ω σpost

CaseD =

c-callback-invoke

ω; cb md(v) ∈ Ω

⟨Fwk : ω · κ · ρ,Fwk−[cb md(x)]� ℓ⟩ ⇓Ω ℓ : ω; cb md(v) · κ; cb md(v) · ρ[x 7→ v]

The only judgment that applies is:
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a-callback-invoke

⊢ {Fwk : ↠ ω̂cb md(x̂) · κ̂ · ρ̂} Fwk−[cb md(x)]� ℓ {ℓ : ω̂ · κ̂ • cb md(x̂) · ρ̂ ∗∗ x 7→ x̂}

Let σ̂post = ℓ : ω̂ · κ̂ • cb md(x̂) · ρ̂ ∗ ∗ x 7→ x̂.

Let σ̂pre = Fwk : ↠ ω̂cb md(x̂) · κ̂ · ρ̂.

Let σpost = ℓ : ω; cb md(v) · κ; cb md(v) · ρ[x 7→ v]

Let σpre = Fwk : ω · κ · ρ

We have that σpost · θ |=S σ̂post holds for θ = θ′[x̂ 7→ v] by the definition of concretization.

We prove that same assignment, θ ensures that σpre · θ |=S σ̂pre. We break this down into sub-cases

for each part of the abstract state:

Sub Case: If ω; cb md(v) · θ |=S ω̂ and ω; cb md(v) ∈ Ω then ω · θ |=S↠ ω̂cb md(x̂).

cb md(v) · θ |= cb md(x̂) since θ = θ′[x̂ 7→ v].

Since the premise of the lemma states Ω ⊆ ΩS then for all ω, ω ∈ Ω implies ω |= S .

Then from ω; cb md(v) ∈ Ω we have that ω; cb md(v) |= S .

Therefore, ω · θ |=S↠ ω̂cb md(x̂) holds by the definition of concretization.

Sub Case: If κ; cb md(v) · θ |= κ̂ • cb md(x̂) then κ · θ |= κ̂.

Since θ = θ′[x̂ 7→ v] this case holds by the definition of concretization.

Sub Case: If ρ[x 7→ v] · θ |= ρ̂ ∗ ∗ x 7→ x̂ then ρ · θ |= ρ̂.

Since θ = θ′[x̂ 7→ v] this case holds by the definition of concretization.

CaseD =

c-callback-return

m = cbret ρ(x′) md(v) v = ρ(x) ω; m ∈ Ω

⟨ℓ : ω · κ; cb md(v) · ρ, ℓ−[cbret x′md(x)]� Fwk⟩ ⇓Ω Fwk : ω; m · κ · ρ

The only judgment that applies is:
a-callback-return

ρ̂ = ρ̂
′
∗ x′ 7→ x̂′ ∗∗ x 7→ x̂

⊢ {ℓ : ↠ ω̂cbret x̂′md(x̂) · κ̂ • cb md(x̂) · ρ̂} ℓ−[cbret x′md(x)]� Fwk {Fwk : ω̂ · κ̂ · ρ̂}
Let σ̂post = Fwk : ω̂ · κ̂ · ρ̂.

Let σ̂pre = ℓ : ↠ ω̂cbret x̂′md(x̂) · κ̂ • cb md(x̂) · ρ̂ ∗ x′ 7→ x̂′.

Let σpost = Fwk : ω; cbret v′md(v) · κ · ρ

Let σpre = ℓ : ω · κ; cb md(v) · ρ



173

We have that σpost · θ |=S σ̂post holds for θ = θ′[x̂′ 7→ v′][x̂ 7→ v] by the definition of concretization.

We prove that σpre · θ |=S σ̂pre.

We break this down into sub-cases for each part of the abstract state:

Sub Case: If ω; cbret v′md(v) · θ |=S ω̂ then ω · θ |=S↠ ω̂cbret x̂′md(x̂)

cbret v′md(v) · θ |= cbret x̂′md(x̂) since θ = θ′[x̂′ 7→ v′][x̂ 7→ v].

Since the premise of the lemma states Ω ⊆ ΩS then for all ω, ω ∈ Ω implies ω |= S .

Then from ω; cbret v′md(v) ∈ Ω we have that ω; cbret v′md(v) |= S .

Therefore, ω · θ |=S↠ ω̂cbret x̂′md(x̂) holds by the definition of concretization.

Sub Case: If κ · θ |= κ̂ then κ; cb md(v) · θ |= κ; cb md(x̂).

This case holds by the definition of concretization of the stack.

Sub Case: If ρ[x′ 7→ v′][x 7→ v] · θ |= ρ̂′ ∗ x′ 7→ x̂′ ∗ ∗ x 7→ x̂

then ρ[x′ 7→ v′][x 7→ v] · θ |= ρ̂′ ∗ x′ 7→ x̂′ ∗ ∗ x 7→ x̂.

This case holds trivially.

CaseD =

c-callin-invoke

v = ρ(x) m = ci v′md(v) ω; m ∈ Ω

⟨ℓ : ω · κ · ρ, ℓ−[ci x′md(x)]� ℓ′⟩ ⇓Ω ℓ′ : ω; m · κ · ρ[x′ 7→ v′]

The only judgment that applies is:
a-callin-invoke

ρ̂ = ρ̂
′
∗∗ x 7→ x̂

⊢ {ℓ : ↠ ω̂ci x̂′md(x̂) · κ̂ · ρ̂} ℓ−[ci x′md(x)]� ℓ′ {ℓ′ : ω̂ · κ̂ · ρ̂ ∗ x′ 7→ x̂′}

Let σ̂post = ℓ
′ : ω̂ · κ̂ · ρ̂ ∗ x′ 7→ x̂′.

Let σ̂pre = ℓ : ↠ ω̂ci x̂′md(x̂) · κ̂ · ρ̂.

Let σpost = ℓ
′ : ω; ci v′md(v) · κ · ρ[x′ 7→ v′]

Let σpre = ℓ : ω · κ · ρ

We have that σpost · θ |=S σ̂post holds for any θ such that θ = θ′[x̂ 7→ v][x̂′ 7→ v′] by the definition of

concretization.

We prove that σpre · θ |=S σ̂pre.

We break this down into sub-cases for each part of the abstract state:
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Sub Case: If ω; ci v′md(v) · θ |=S ω̂ then ω · θ |=S↠ ω̂ci x̂′md(x̂)

ci v′md(v) · θ |=S ci x̂′md(x̂) since θ = θ′[x̂ 7→ v][x̂′ 7→ v′]

Since the premise of the lemma states Ω ⊆ ΩS then for all ω, ω ∈ Ω implies ω |= S .

Then from ω; ci v′md(v) ∈ Ω we have that ω; ci v′md(v) |= S .

Therefore, ω · θ |=S↠ ω̂ci x̂′md(x̂) holds by the definition of concretization.

Sub Case: If κ · θ |= κ̂ then κ · θ |= κ̂ holds trivially.

Sub Case: If ρ[x′ 7→ v′] · θ |= ρ̂ ∗ x′ 7→ x̂′ then ρ · θ |= ρ̂.

This case holds by the definition of concretization of app stores.

□

Lemma 3.2 (boundary-step soundness) If Σ̂ ⊢S b and ⟨σ′, b⟩ ⇓Ω σ such that σ |=S Σ̂(post(b)) and

Ω ⊆ ΩS , then σ′ |=S Σ̂(pre(b)).

Proof of Lemma 2. By inversion on Σ̂ ⊢S b we have Σ̂(post(b)) ⊢S σ̂ and ⊢ {σ̂′} b {σ̂} and σ̂′ ⊢S Σ̂(pre(b)).

By applying Property 3, we have σ |=S σ̂.

By applying Lemma 1, we have σ′ |=S σ̂
′.

By applying Property 3, we have σ′ |=S Σ̂(pre(b)).

□

Lemma 3.3 (inductive soundness) If Σ̂ ⊢Sp σ̂ and σ′ →∗Ωp σ such that σ |=S σ̂ and Ω ⊆ ΩS , then

σ′ |=S Σ̂(loc(σ′)).

Proof of Lemma 3. Proof by induction on the derivationD = σinit →
∗Ω

p σ.

CaseD =

c-transitive-step

σ = σ′

σ′ →∗Ωp σ

By inversion on c-transitive-step, we have σ′ = σ.

From Σ̂ ⊢Sp σ̂ and by inversion on A-Inductive, we have σ̂ ⊢S Σ̂(loc(σ̂)). From σ |=S σ̂ and σ′ = σ

and Property 3 we have σ′ |=S Σ̂(loc(σ′)) satisfying the consequent of Lemma 3.3.



175

CaseD =

c-trnasitive-step-inductive

σ′ →∗Ωp σ
′′ σ′′ →Ωp σ

σ′ →∗Ωp σ

The inductive hypothesis states: If Σ̂
′′
⊢Sp σ̂

′′ and σ′′ |=S σ̂
′′ and σ′ →∗Ωp σ′′ then σ′ |=S

Σ̂
′′

(loc(σ′)).

From the premise of Lemma 3.3, we assume Σ̂ ⊢Sp σ̂ and σ |=S σ̂ and σ′ →∗Ωp σ.

By inversion on c-transitive-step-inductive we have σ′ →∗Ωp σ′′ and σ′′ →Ωp σ.

By inversion on σ′′ →Ωp σ we have two cases for an application and boundary step.

Sub Case c-app-stepp: By inversion on c-app-step we have ⟨σ′′, t⟩ ⇓Ω σ and t ∈ p.

By inversion from Σ̂ ⊢Sp σ̂ we have σ̂ ⊢S Σ̂(loc(σ̂)) and Σ̂ ⊢ t for all t ∈ p.

Applying Assumption 1 to ⟨σ′′, t⟩ ⇓ σ and Σ̂ ⊢ t and t ∈ p we have σ′′ |=S Σ̂(pre(t)) and

pre(t) = loc(σ′′).

By the inductive hypothesis, we have σ′ |=S Σ̂(loc(σ′)).

Sub Case c-boundary-step we have ⟨σ′′, b⟩ ⇓Ω σ and b ∈ p.

By inversion from Σ̂ ⊢Sp σ̂ we have σ̂ ⊢S Σ̂(loc(σ̂)) and Σ̂ ⊢S b for all b ∈ p.

Applying Lemma 2 to ⟨σ′′, b⟩ ⇓Ω σ and Σ̂ ⊢ b and b ∈ p we have σ′′ |=S Σ̂(pre(b)).

From the abstract boundary step rules pre(b) = loc(σ′′).

By the inductive hypothesis, we have σ′ |=S Σ̂(loc(σ′)).

□

Theorem 3.4 (refute soundness) If ⊢Sp σ̂ unreach and σ′ →∗Ωp σ and σ |=S σ̂ and Ω ⊆ ΩS then

σ′ , σinit .

Proof of Theorem 4. Proof by contradiction: if we assume that ⊢Sp σ̂ unreach and σinit →
∗Ω

p σ and σ |=S σ̂.

By inversion on ⊢Sp σ̂ unreach we know Σ̂ ⊢Sp σ̂ and ⊢S Σ̂(Fwk) excludesinit then we can derive a

contradiction.

From Σ̂ ⊢Sp σ̂ andσinit →
∗Ω

p σ and Lemma 3 we have thatσinit |=S Σ̂(Fwk) (note that loc(σinit) = Fwk).

By Property 2 it must be the case that σinit ̸|= Σ̂(Fwk).
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From σinit ̸|=S Σ̂(Fwk) and σinit |=S Σ̂(Fwk) we derive a contradiction. Therefore, any σ |=S σ̂ cannot

be reached from the initial state.

□

A.3 Proofs for Combining Abstract Message Histories with Callback Control-Flow

Proof of Theorem 5(1). In the forward direction (1) we proceed by induction on the derivation D = ⊢S

ω̂ ≡ ω̃

CaseD =

temporal-okhist

⊢S okhist ≡ true
If ⊢S okhist ≡ true and ω · θ |=S okhist then ω · θ |= true. This case holds trivially.

CaseD =

temporal-hypmsg

S , m̂1 ⊢ ω̃
′
1 ⊢S ω̂2 ≡ ω̃2 ⊢ ω̃2 ≡ ω̃

′
2 # m̂1

⊢S↠ ω̂2m̂1 ≡ ω̃
′
1 ∧ ω̃

′
2

LetD1 be the premise ⊢S ω̂2 ≡ ω̃2.

Assume ω · θ |=S↠ m̂1ω̂2.

Pick a concrete message m1 such that m1 · θ |= m̂1 as concrete message always exists for any m̂.

By the definition of concretization, |=S , and sinceω·θ |=S↠ m̂1ω̂2 if m1·θ |= m̂1 thenω; m1·θ |=S ω̂2.

By the inductive hypothesis onD1 with ω; m1 · θ |=S ω̂2, we have ω; m1 · θ |= ω̃2.

From ω; m1 · θ |=S ω̂2, the base case of concretization, and the fact that realizable message histories

are closed under prefix, we have that ω; m1 |= S .

By Lemma 6(1), and the premise S , m̂1 ⊢ ω̃
′
1 ofD, and ω; m1 |= S we have that ω · θ |= ω̃′1.

By Lemma 7(1), and the premise ⊢ ω̃2 ≡ ω̃
′
2 # m̂1 ofD, and ω; m1 · θ |= ω̃2 we have that ω · θ |= ω̃′2.

Therefore ω · θ |= ω̃′1 ∧ ω̃
′
2.

□

Proof of Theorem 5(2). In the backward direction (2) we use Proof by induction on the derivation D =⊢S

ω̂ ≡ ω̃



177

CaseD =

temporal-okhist

⊢S okhist ≡ true
If ⊢S okhist ≡ true, ω · θ |= true and ω |= S then ω · θ |=S okhist. This case holds trivially by the

definition of |=S .

CaseD =

temporal-hypmsg

S , m̂1 ⊢ ω̃
′
1 ⊢S ω̂2 ≡ ω̃2 ⊢ ω̃2 ≡ ω̃

′
2 # m̂1

⊢S↠ ω̂2m̂1 ≡ ω̃
′
1 ∧ ω̃

′
2

LetD1 be the premise ⊢S ω̂2 ≡ ω̃2.

Assume ω · θ |= ω̃′1 ∧ ω̃
′
2.

Pick m1 such that m1 · θ |= m̂1 as a message always exists for any m̂.

From ω · θ |= ω̃′1 ∧ ω̃
′
2 we have ω · θ |= ω̃′1.

From Lemma 6 (2), ω |= S , m1 · θ |= m̂1, the premise S , m̂1 ⊢ ω̃
′
1, and ω · θ |= ω̃′1, we have that

ω; m1 |= S .

From ω · θ |= ω̃′1 ∧ ω̃
′
2 we have ω · θ |= ω̃′2.

From Lemma 7 (2), m1 ·θ |= m̂1, and the last premise ofD, ⊢ ω̃2 ≡ ω̃
′
2 #m̂1, we have thatω; m1 |= ω̃2.

By the induction hypothesis onD1, ω; m1 |= S , and ω; m1 · θ |= ω̃2, we have that ω; m1 · θ |=S ω̂2.

From the right to left direction of the definition of concretization |=S , message m1 can be appended

and model the abstract trace ω; m1 · θ |=S ω̂2 and m1 is in the abstract message m1 · θ |= m̂1, we have that

ω · θ |=S↠ ω̂2m̂1.

□

Note that the following two proofs are inductive due to the “and” case of the specification, S .

Proof of Lemma 6 in the forward direction 1. Proof by induction over the derivationD = S , m̂ ⊢ ω̃.

CaseD =

instantiate-yes

m̂1 ≃ϑ m̂2

(m̂2 � ω̃), m̂1 ⊢ [ϑ]ω̃
From the lemma we have a history with a message appended models the specification ω; m1 |=

(m̂2 � ω̃), there is a message in the abstract message m1 · θ1 |= m̂1.
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From the premise m̂1 ≃ϑ m̂2 we have the capture avoiding substitution ϑ such that m̂1 is equal to

[ϑ]m̂2.

From the semantics of CBCFTL in Figure 4.3, we have that m2 · θ2 |= m̂2 such that ω[i] = m2

implies ω · θ2 · i − 1 |= ω̃.

Since the free variables of ω̃ are a subset or equal to the free variables of m̂2, the substitution, [ϑ]ω̃,

captures all free variables of ω̃. Since this substitution is capture avoiding, all the relevant bindings in θ2 are

swapped for the corresponding m̂1 values and we can apply the implication from the CBCFTL semantics

getting ω; m1 · θ1 · len(ω) − 1 |= [ϑ]ω̃ which is equivalent to our theorem goal, ω · θ1 · len(ω)[ϑ] |= ω̃.

CaseD =

instantiate-no

m̂1 ; m̂2

(m̂2 � ω̃), m̂1 ⊢ true

Trivially, ω · θ · len(ω) |= true.

CaseD =

instantiate-and

(S 1), m̂1 ⊢ ω̃1 (S 2), m̂1 ⊢ ω̃2

(S 1 ∧ S 2), m̂1 ⊢ ω̃1 ∧ ω̃2

Since the semantics of intended for ∧ (elided from figure 4.3 for brevity) are that it is a conjunction

of each instantiated specification, this case holds trivially.

CaseD =

instantiate-true

true, m̂1 ⊢ true
Since any history, ω, is feasible under the “true” specification, this case holds trivially. □

Proof of Lemma 6 in the backward direction 2. Proof by induction over the derivationD = S , m̂ ⊢ ω̃.

CaseD =

instantiate-yes

m̂1 ≃ϑ m̂2

(m̂2 � ω̃), m̂1 ⊢ [ϑ]ω̃
From the lemma, we have that ω · θ1 |= (m̂2 � ω̃), m1 · θ1 |= m̂1, and ω · θ1 |= [ϑ]ω̃.

From the premise m̂1 ≃ϑ m̂2 we have the capture avoiding substitution ϑ such that m̂1 is equal to

[ϑ]m̂2.

From the semantics of CBCFTL in Figure 4.3, we have that m2 · θ2 |= m̂2 such that ω[i] = m2

implies ω · θ2 · i − 1 |= ω̃.
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By similar reasoning as the proof for Lemma 6 (1) we know that any history and assignment

such that ω · θ1 |= [ϑ]ω̃ captures the variables shared between [ϑ]m̂2 and [ϑ]ω̃ so any message such that

m · θ1 |= [ϑ]m̂2 may be appended to a message history, ω such that ω |= (m̂2 � ω̃) and we know that

ω; m |= (m̂2 � ω̃).

The other cases are similar to the forward proof.

□

For the following proofs, we give the definition of Match(m̃, m̂) as the following:

(1) If the names and message types of m̃ and m̂ are the same, then Match(m̃, m̂) results in a conjunction

of comparisons between each free variable of m̃ and the corresponding m̂ variable.

(2) If the names or message types of m̃ and m̂ are different, then Match(m̃, m̂) is false.

We define NotMatch(m̃, m̂) as the negation of Match(m̃, m̂).

Proof of Lemma 7 in the forward direction 1. Proof by induction on the derivation D =⊢ ω̃ ≡ ω̃′ # m̂. We

reference the CBCFTL semantics in Figure 4.3 and the judgments in Figure 4.4.

In the following, let fv(m) = fv(m̃) be the conjunction comparing each variable not quantified in

the expansion of m̃ into its definition ∃x̂.m̂′ to the corresponding value of m.

CaseD =

quotient-once

⊢ O m̃ ≡ Match(m̃, m̂) ∨ (NotMatch(m̃, m̂) ∧ O m̃) # m̂

From the lemma we have that, ω; m · θ |= O m̃ and m · θ |= m̂. There are two subcases to consider:

Subcase 1: the message names and types are equal, m ≃ϑ m̃.

From the semantics of Once, fv(m)m̃ implies ω · θ |= O m̃. By the definition of message equiva-

lence (1), this is equivalent to Match(m̃, m̂) ∨ (NotMatch(m̃, m̂) ∧ O m̃)

Subcase 2: the names or message types are not equal, m ; m̃ are not equal.

From the semantics of Once, ω · θ |= O m̃ must hold since m cannot match m̃.

Under the assumption that the name or message type does not match

Match(m̃, m̂) ∨ (NotMatch(m̃, m̂) ∧ O m̃) ≡ O m̃ by the definition of message equivalence (2).
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CaseD =

quotient-historically-not

⊢ HN m̃ ≡ HN m̃ ∧ NotMatch(m̃, m̂) # m̂

From the lemma we have that, ω; m · θ |= HN m̃ and m · θ |= m̂.

From the semantics of Has Not, ω ·θ |= HN m̃. This holds for the formula HN m̃∧NotMatch(m̃, m̂).

CaseD =

quotient-not-since

⊢ m̃2 NS m̃1 ≡ Match(m̃1, m̂) ∨ (NotMatch(m̃1, m̂) ∧ m̃2 NS m̃1 ∧ NotMatch(m̃2, m̂)) # m̂

From the lemma we have that, ω; m · θ |= m̃1 NS m̃2 and m · θ |= m̂. There are three subcases to

consider:

Subcase 1: the message names and types are equal between the positive message, m ≃ϑ m̃2.

From the semantics of Not Since: not fv(m) = fv(m̃2) implies ω · θ |= m̃1 NS m̃2. This is implied

by the formula Match(m̃1, m̂)∨ (NotMatch(m̃1, m̂)∧ m̃2 NS m̃1 ∧NotMatch(m̃2, m̂)) since the first disjunction

is false due to the definition of message equivalence.

Subcase 2: the message names and types are equal between the negative message, m ≃ϑ m̃1.

From the semantics of Not Since: not fv(m) = fv(m̃1) implies ω · θ |= m̃1 NS m̃2. This is implied

by the formula Match(m̃1, m̂)∨ (NotMatch(m̃1, m̂)∧ m̃2 NS m̃1 ∧NotMatch(m̃2, m̂)) since the first disjunction

is false due to the definition of message equivalence.

Subcase 3: the message names and types are not equal to either message, m ; m̃1 and m ; m̃2.

From the semantics of Not Since: ω·θ |= m̃1 NS m̃2. This is implied by the formula Match(m̃1, m̂)∨

(NotMatch(m̃1, m̂) ∧ m̃2 NS m̃1 ∧ NotMatch(m̃2, m̂)) since Match(m̃1, m̂) and Match(m̃2, m̂) are both false by

the definition of message equivalence.

CaseD =

quotient-and

⊢ ω̃1 ≡ ω̃
′
1 # m̂ ⊢ ω̃2 ≡ ω̃

′
2 # m̂

⊢ ω̃1 ∧ ω̃2 ≡ ω̃
′
1 ∧ ω̃

′
2 # m̂

From the lemma and the judgment, quotient-and, we have m·θ |= m̂, ω; m·θ |= ω̃1∧ω̃2, ω; m·θ |= ω̃1

implies ω · θ |= ω̃′1, and ω; m · θ |= ω̃2 implies ω · θ |= ω̃′2.

By the semantics of and (elided from Figure 4.3), ω; m · θ |= ω̃1 ∧ ω̃2, and the two implications, we

have that ω · θ |= ω̃′1 ∧ ω̃
′
2.

The cases for ∨, ∀x̂.ω̃, and ∃x̂.ω̃ are similar to ∧.

For all the following productions, the message history is not affected: x̂1 = x̂2, x̂1 , x̂2, and “true”.
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Therefore, they model any history ω · θ.

For the case “false”, it cannot model ω · θ therefore holds vacuously.

□

Proof of Lemma 7 in the backward direction 2. Proof by induction on the derivationD =⊢ ω̃ ≡ ω̃′ # m̂. We

reference the CBCFTL semantics in Figure 4.3 and the judgments in Figure 4.4.

Let fv(m) = fv(m̃) be the conjunction of comparing each variable not quantified in the expansion

of m̃ into its definition ∃x̂.m̂′ to the corresponding value of m.

CaseD =

quotient-once

⊢ O m̃ ≡ Match(m̃, m̂) ∨ (NotMatch(m̃, m̂) ∧ O m̃) # m̂

From the lemma we have that ω · θ |= Match(m̃, m̂) ∨ (NotMatch(m̃, m̂) ∧ O m̃) and m · θ |= m̂. We

consider two different subcases, in the case the message names are the same or not.

Assume the message names matches, m ≃ϑ m̃. It is either the case that the arguments match,

fv(m) = fv(m̃), and θ(m̃) = m making i for Once equals len(ω; m) or the arguments don’t match, not

fv(m) = fv(m̃), and the i for once is in ω. In both cases ω; m · θ |= O m̃.

Assume the message names do not match, m ; m̃. In this case Match(m̃, m̂) is false so the i for

once must be in ω, therefore ω; m · θ |= O m̃.

CaseD =

quotient-historically-not

⊢ HN m̃ ≡ HN m̃ ∧ NotMatch(m̃, m̂) # m̂

From the lemma we have that ω · θ |= HN m̃ ∧ NotMatch(m̃, m̂) and m · θ |= m̂.

From the definition of message not equals, we know either m ; m̃ or not fv(m) = fv(m̃) so θ(m̃) ,

m.

From the definition of Historically Not we have that ω · θ |= HN m̃.

Since we have θ(m̃) , m and ω · θ |= HN m̃, by the definition of Historically Not, we have that

ω; m · θ |= HN m̃.

CaseD =

quotient-not-since

⊢ m̃2 NS m̃1 ≡ Match(m̃1, m̂) ∨ (NotMatch(m̃1, m̂) ∧ m̃2 NS m̃1 ∧ NotMatch(m̃2, m̂)) # m̂

From the lemma we have thatω·θ |= Match(m̃1, m̂)∨(NotMatch(m̃1, m̂)∧m̃2 NS m̃1∧NotMatch(m̃2, m̂))
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and m · θ |= m̂. We have two subcases:

Subcase m ≃ϑ m̃2 and fv(m) = fv(m̃2): In this case the i from the definition of Not Since is at the

last message, m, and ω; m · θ |= m̃1 NS m̃2.

Subcase m ; m̃2 or fv(m) , fv(m̃2): In this case, we have NotMatch(m̃1, m̂) so the i in Not Since

must be in ω.

by the definition of message not equals, we know that m̃1 ; m̂ or fv(m̂) , fv(m̃1) so m must not be

equal to m̃ under assignment θ and therefore ω; m · θ |= m̃1 NS m̃2.

CaseD =

quotient-and

⊢ ω̃1 ≡ ω̃
′
1 # m̂ ⊢ ω̃2 ≡ ω̃

′
2 # m̂

⊢ ω̃1 ∧ ω̃2 ≡ ω̃
′
1 ∧ ω̃

′
2 # m̂

From the lemma and the quotient-and judgment, we have that m · θ |= m̂, ω · θ |= ω̃′1∧ ω̃
′
2, ω · θ |= ω̃′1

implies ω; m · θ |= ω̃1, and ω · θ |= ω̃′2 implies ω; m · θ |= ω̃2.

By the straightforward semantics of and (elided from Figure 4.3), ω · θ |= ω̃1 ∧ ω̃2, and the two

implications, we have that ω; m · θ |= ω̃1 ∧ ω̃2.

The cases for ∨, ∀x̂.ω̃, and ∃x̂.ω̃ are similar to ∧.

For all the following productions, the message history is not affected: x̂1 = x̂2, x̂1 , x̂2, and “true”.

Therefore, they model any history ω; ·θ.

For the case “false”, it cannot model ω; m · θ therefore holds vacuously.

□

A.4 Extended Explanations of the Benchmark Applications and Specifications

Here, we give a listing of all the specifications we wrote for section 4.4 RQ1, details on the crashes,

and reasons the Flowdroid model would not be able to classify the benchmarks correctly.

The first benchmark, getAct[8] , is a slightly more complex version of the motivating example in

the Historia paper [89]. This benchmark uses a background task with the RXJava library to load a media

object. A callback call is invoked when the media is loaded. This defect occurs if the call happens

after the application has been destroyed with onDestroy. Calling getActivity before onCreate or after

onDestroy results in a null value as captured by History Implication 8. Since the call callback invokes
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getActivity, this results in a NullPointerException. History Implication 6 is used to capture the fix

where unsubscribe prevents the crashing call invocation.

History Implication 6. For all objects l and m, if the framework invokes l.call(m), then for some (sub-

scription) object s, the message ci s.unsubscribe() has Not happened Since ci s = _.subscribe(l).

cb l.call(m)� ∃s. ci s.unsubscribe() NS ci s =.subscribe( l)

History Implication 7. For all f, if the framework invokes f.onCreate(), the same message

cb f.onCreate() is Historially Not possible (or, Has Never been invoked in the past).

cb f.onCreate()� HN cb f.onCreate()

History Implication 8. The method getActivity returns null when invoked on an Activity in the paused

state.

ci null = f.getActivity()� cb f.onActivityCreated() NS cbret f.onDestroy() ∨ HN cb f.onActivityCreated()

History Implication 9. For a given Fragment instance, either onActivityCreated has not been invoked

or onDestroy has not been invoked since onActivityCreated.

cb f.onActivityCreated()�HN cbret f.onDestroy()∧

HN cb f.onActivityCreated() ∧ HN cb f.onActivityCreated()

Flowdroid would not alarm on the buggy version of getAct[8] because call was not in the call

graph making the assertion unreachable. If call was added to the framework model generation (e.g. by

Edgeminer [25]), then the Flowdroid model would not be able to capture the effect of unsubscribe (i.e.

History Implication 6) resulting in a false positive for the fix.

The second benchmark, execute[10] , has a button that starts an AsyncTask to perform an action in

the background using the execute callin. AsyncTask is an abstract class that can be overridden by the app



184

to encapsulate long running tasks (similar to Single). In order to prevent concurrency issues in the state

of the overridden class, the framework enforces that execute crashes if called twice on the same instance

of the overridden class. We capture this exceptional return with History Implication 10. If the button was

clicked twice quickly, the task could be executed twice crashing the application. The fix was to disable

the button using b.setEnabled(false) (History Implication 11). Additionally, if the listener could be

registered to two different buttons via two calls to onCreate which calls setOnClickListener, then the

second button could be pressed crashing the app. To rule out this case, we needed History Implication 7

(also needed by getAct[8] ).

History Implication 10. For any given instance of AsyncTask, the execute method throws an exception

if execute has been invoked in the past.

exn ci t.execute()� O ciret t.execute()

History Implication 11. Every time the onClick callback occur, the associated button has not been dis-

abled.

cb l.onClick()� ∃ v. (O ci v.setOnClickListener(l)∧

(HN ci v.setEnabled(false) ∨ ci v.setEnabled(false) NS ci v.setEnabled(true)))

The fix for execute[10] would be misclassified by Flowdroid’s model because the effect of the callin

b.setEnable(false) on the button is not captured.

The third benchmark, dismiss[12] , uses a background task (via AsyncTask) and when the task

finishes, the onPostExecute callback dismisses a ProgressDialog. If the ProgressDialog is dismissed

after the parent has been paused, it throws an exception (History implication 12). The fix was to check if

the parent UI was visible before dismissing the dialog using the application state. Additionally, we needed

to restrict the method used to create the dialog, show, to return a fresh dialog instance each time (History

Implication 13).
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History Implication 12. The dismiss callin throws an exception if invoked while the attached Activity

is paused.

exn ci d.dismiss()� ∃a. O ci d := _.show(a) ∧ HN cb a.onResume() ∨ cb a.onResume() NS cbret a.onPause()

History Implication 13. When the show callin returns an object, it must have been the case that the object

was not returned by a different show in the past.

ci d = b.show()� HN ci d = _.show()

The bug for dismiss[12] would not be detected by Flowdroid because the onPostExecute callback

was not in the call graph. Adding onPostExecute to the Flowdroid would result in a false alarm on the fix

because the interaction between show, dismiss, onPause, and onResume captured by History Implication

12 could not be captured due to the callins.

The fourth benchmark, finishnull , has a button that dereferences a field in a onClick callback. This

field is set to null when the Activity is paused (via onPause) to save memory. However, via what may

be considered a bug in some versions of the Android framework itself, calling finish on an Activity

can result in the onClick callback occurring after onPause (History Implication 14). Similar to other

benchmarks, there is a onCreate that registers the button and can only happen once (History Implication

7). Since an Activity may have multiple simultaneous instances in an Android app, we also need a spec

that says a button may only come from one Activity instance (History Implication 15).

History Implication 14. Every time the onClick callback happens on the listener object l, the listener

was registered on a Button object v, and the Activity object a was either in the “resumed state” (i.e.,

after a onResume but before than a onPause) or the message finish happened.
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cb l.onClick()� ∃ a, v. (ci v.setOnClickList(null) NS ci v.setOnClickList(l)∧

O ci v = a.findViewById(_)∧

(cbret a.onPause() NS cb a.onResume() ∨ O ci a.finish()))

History Implication 15. Every time a findViewById on an Activity object a returns a View object v,

any previous invocation of findViewById that returned v was invoked on the same Activity a.

ci v = a.findViewById(id)� ∀ a2. (HN ci v = a2.findViewById(_) ∨ a = a2)

The bug for finishnull would be missed by Flowdroid’s model because this model assumes a onClick

may only occur after an onCreate and before an onPause. If onClick were allowed to occur after

onPause, then the Flowdroid model would still need to reason about the callin v.setOnClickListener(null)

which prevents onClick.

The fifth benchmark subsnull is caused by a dereference of a nullable field callback that is used by

RXJava for synchronizing the results of a background task with the UI thread. Similar to the first benchmark,

this bug would not be detected by a whole-program analysis using the Flowdroid main method because the

synchronization callback is missing from the call graph.

History Implication 16. The dispose callin prevents calls to the subscribe callback.

cb l.subscribe()� ∃ m, s. O ci m = create(l)∧

ci s.dispose() NS ci s = m.subscribe()

History Implication 17. The subscribeOn callin always returns its recieiver (Java builder pattern).

ci t = v.subscribeOn()� t = v
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History Implication 18. The observeOn callin always returns its recieiver (Java builder pattern).

ci t = v.observeOn()� t = v

History Implication 19. The onStart callback may only occur first or after an onStop.

cb f.onStart()� (HN cb f.onStart() ∧ HN cb f.onStop())∨

cb f.onStart() NS cb f.onStop()

History Implication 20. A value may only be returned from the create callin once.

ci m = create()� HN ci m = create()



Appendix B

Generation of ChatGPT Benchmarks for Discovery and Explanation of Even-Driven

Defects Evaluation

In section 5.4 the evaluation was performed on a set of the most common runtime problems as reported

by a set of blog posts. To avoid researcher bias in how the benchmarks are constructed, we used ChatGPT

to generate examples of the runtime problems from the blog posts. This consisted of prompting the model

for a non-trivial example of the issue in question, and inspecting the result. If the output is a reasonable

program exhibiting the defect, we proceed with our process of adding the necessary build and resource files

to produce a full application. If the output does not exhibit the issue, we proceed to reprompt the model,

asking for a less trivial example. In this section, we collect the prompts used to produce our benchmarks.

Only the prompt producing the final, usable output is shown for each benchmark, for brevity.

Bitmap Mishandling:

User: Give me a non-trivial example of an android application that does not handle bitmaps correctly.

Output:

public class MainActivity extends AppCompatActivity {

private Integer[] imageIDs = {

R.drawable.image1, R.drawable.image2, R.drawable.image3,

R.drawable.image4, R.drawable.image5, // Assume these are large

bitmap resources

};
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@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

GridView gridView = findViewById(R.id.gridView);

gridView.setAdapter(new ImageAdapter(this));

}

public class ImageAdapter extends BaseAdapter {

private Context context;

public ImageAdapter(Context c) {

context = c;

}

public int getCount() {

return imageIDs.length;

}

public Object getItem(int position) {

return position;

}

public long getItemId(int position) {

return position;



190

}

// Create a new ImageView for each item referenced by the

Adapter

public View getView(int position , View convertView , ViewGroup

parent) {

ImageView imageView;

if (convertView == null) {

imageView = new ImageView(context);

imageView.setLayoutParams(new ViewGroup.LayoutParams

(350, 350));

imageView.setScaleType(ImageView.ScaleType.CENTER_CROP)

;

} else {

imageView = (ImageView) convertView;

}

imageView.setImageResource(imageIDs[position]); // Loading

the full-sized image

return imageView;

}

}

}

<?xml version="1.0" encoding="utf-8"?>

<GridView xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/gridView"
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android:layout_width="match_parent"

android:layout_height="match_parent"

android:numColumns="auto_fit"

android:columnWidth="100dp"

android:stretchMode="columnWidth"

android:gravity="center"/>

Explanation: Loading bitmaps is memory-intensive, and this application renders several of these at

the same time.

Device Configuration

User: Give me a non-trivial example of an android application that does not handle device

configuration changes correctly.

Output:

public class MainActivity extends AppCompatActivity {

private EditText usernameInput;

private EditText emailInput;

// Assume more fields here

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

usernameInput = findViewById(R.id.usernameInput);

emailInput = findViewById(R.id.emailInput);

// Initialize other fields here
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// No handling of savedInstanceState to restore state

}

// Missing onSaveInstanceState method to save the activity’s state

}

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android

"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical"

android:padding="16dp">

<EditText

android:id="@+id/usernameInput"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:hint="Username" />

<EditText

android:id="@+id/emailInput"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:hint="Email" />
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<!-- Additional input fields -->

</LinearLayout >

Explanation: When an Activity is created, it may have some saved state to load, which can be used for

restoring text fields, for instance. This application does not check if this state is null, and so ignores any

previously saved data.

Device Compatibility

User: Give me a non-trivial example of an android application where the developer overlooked device

compatibility. Output:

public class CameraActivity extends Activity implements SurfaceHolder

.Callback {

private Camera camera;

private SurfaceView surfaceView;

private SurfaceHolder surfaceHolder;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_camera);

surfaceView = findViewById(R.id.cameraSurfaceView);

surfaceHolder = surfaceView.getHolder();

surfaceHolder.addCallback(this);

}
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private boolean safeCameraOpen() {

boolean qOpened = false;

try {

releaseCamera();

camera = Camera.open();

qOpened = (camera != null);

} catch (Exception e) {

Toast.makeText(this, "Failed␣to␣open␣camera", Toast.

LENGTH_LONG).show();

}

return qOpened;

}

@Override

public void surfaceCreated(SurfaceHolder holder) {

if (camera != null) {

try {

camera.setPreviewDisplay(holder);

camera.startPreview();

} catch (Exception e) {

Toast.makeText(this, "Failed␣to␣start␣camera␣preview",

Toast.LENGTH_LONG).show();

}

}

}

@Override
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public void surfaceChanged(SurfaceHolder holder, int format, int

width, int height) {

// Handle changes

}

@Override

public void surfaceDestroyed(SurfaceHolder holder) {

// Release camera

}

private void releaseCamera() {

if (camera != null) {

camera.stopPreview();

camera.release();

camera = null;

}

}

@Override

protected void onPause() {

super.onPause();

releaseCamera();

}

}

Explanation: This application uses the deprecated Camera API, which may lead to bugs in devices which

do not support this API.
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Dialog Origin

User: Give me an example of an android application that throws the ”Activity has leaked window that was

originally added here” exception. Output:

public class MainActivity extends AppCompatActivity {

private ProgressDialog progressDialog;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

// Showing a ProgressDialog

progressDialog = new ProgressDialog(MainActivity.this);

progressDialog.setMessage("Loading...");

progressDialog.show();

// Simulate some operation that finishes after the activity has

been destroyed

// In a real app, this could be a network request or a long

computation

new Thread(new Runnable() {

@Override

public void run() {

try {

Thread.sleep(10000); // 10 seconds
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progressDialog.dismiss(); // Attempt to dismiss

after activity is possibly destroyed

} catch (InterruptedException e) {

e.printStackTrace();

}

}

}).start();

}

}

Explanation: This application spawns a thread which creates a dialog window, sleeps, and then dismisses

the dialog. If the Activity which contained the dialog is destroyed before the dialog is dismissed, then an

exception is thrown, as the dialog is leaked.

Execute Twice

User: Give me an example of an android application that throws the error

”java.lang.IllegalStateException: Cannot execute task: the task is already running.” Output:

public class MainActivity extends AppCompatActivity {

private Button startDownloadButton;

private DownloadTask downloadTask;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

downloadTask = new DownloadTask();
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startDownloadButton = findViewById(R.id.startDownloadButton);

startDownloadButton.setOnClickListener(new View.OnClickListener

() {

@Override

public void onClick(View v) {

// Check if downloadTask is already running

if (downloadTask.getStatus() != AsyncTask.Status.

RUNNING) {

// If not running, execute a new task

downloadTask.execute("http://example.com/file.zip")

;

} else {

Toast.makeText(MainActivity.this, "Download␣already

␣in␣progress", Toast.LENGTH_SHORT).show();

}

// Attempt to reuse the same AsyncTask instance for a

new download

// This line is problematic if uncommented; it’s here

for demonstration.

// downloadTask.execute("http://example.com/anotherfile

.zip");

}

});

}
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private static class DownloadTask extends AsyncTask <String, Integer

, String> {

@Override

protected String doInBackground(String... urls) {

// Simulate a download operation

try {

Thread.sleep(5000); // Simulate time delay of download

} catch (InterruptedException e) {

e.printStackTrace();

}

return "Downloaded␣from:␣" + urls[0];

}

@Override

protected void onPostExecute(String result) {

super.onPostExecute(result);

// Show download result (simplified for demonstration)

System.out.println(result);

}

}

}

Explanation: In this application, on each button press, an ASyncTask is executed, unless it is currently

running. This can lead to a crash, as once the ASyncTask is finished executing, the check will fail, and the

task will receive a second execute invocation, causing a crash.

Fragment Lifecycle

User: Give me a non-trivial example of an android application that does not handle the fragment
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lifecycle properly.

Output:

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

if (savedInstanceState == null) {

getSupportFragmentManager().beginTransaction()

.replace(R.id.fragment_container , new

ArticlesFragment())

.commit();

}

}

}

public class ArticlesFragment extends Fragment {

private View rootView;

@Override

public View onCreateView(LayoutInflater inflater , ViewGroup

container ,

Bundle savedInstanceState) {

// Inflate the layout for this fragment
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if (rootView == null) {

rootView = inflater.inflate(R.layout.fragment_articles ,

container , false);

}

return rootView;

}

@Override

public void onAttach(Context context) {

super.onAttach(context);

// Load articles assuming the context is always available

loadArticles();

}

private void loadArticles() {

// Simulate loading articles from the network or database

}

@Override

public void onDestroyView() {

super.onDestroyView();

// Not properly nullifying the rootView can lead to memory

leaks

// rootView = null; // Uncommenting this line is necessary to

avoid leaks

}
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@Override

public void onDestroy(){

super.onDestroy();

}

}

Explanation: When onDestroyView is invoked, the fragment should dispose of its reference to the view in

question, but does not.

Inefficient Network

User: Give me a non-trivial android application that demonstrates inefficient network calls.

Output:

public class MainActivity extends AppCompatActivity {

private ListView listView;

private ArrayList <String> titles = new ArrayList <>();

private ArrayAdapter <String> adapter;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

listView = findViewById(R.id.listView);

adapter = new ArrayAdapter <>(this, android.R.layout.

simple_list_item_1 , titles);

listView.setAdapter(adapter);
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fetchArticles();

}

@Override

protected void onResume() {

super.onResume();

fetchArticles(); // Inefficiently fetches articles every time

the activity resumes

}

private void fetchArticles() {

String url = "https://example.com/api/articles";

RequestQueue queue = Volley.newRequestQueue(this);

StringRequest stringRequest = new StringRequest(Request.Method.

GET, url,

new Response.Listener <String >() {

@Override

public void onResponse(String response) {

try {

JSONArray jsonArray = new JSONArray(response);

titles.clear();

for (int i = 0; i < jsonArray.length(); i++) {

JSONObject jsonObject = jsonArray.

getJSONObject(i);

titles.add(jsonObject.getString("title"));

}
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adapter.notifyDataSetChanged();

} catch (JSONException e) {

e.printStackTrace();

}

}

}, new Response.ErrorListener() {

@Override

public void onErrorResponse(VolleyError error) {

// Handle error

}

});

queue.add(stringRequest);

}

}

Explanation: Every time the onResume callback is invoked, such as when the Activity is brought to

the foreground, the app performs another network call, which can lead to behavior where it is performed

frequently.

Long Running Task

User: Give me a non-trivial example of an Android application that blocks the UI thread with a long

running task.

The output given is too trivial, but recommends using RxJava, a more modern library for these tasks,

so further prompting is taken in this direction.

User: What if the data processing was done with RXJava, could there still be a long running task on

the UI thread?

The output given describes the issue but shows a correct program, so we further prompt:
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User: Give me the example code where RXJava blocks the UI thread.

Output:

public class MainActivity extends AppCompatActivity {

private TextView textView;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

textView = findViewById(R.id.textView);

// Incorrectly starting data processing on the main thread with

RxJava

processDataRxIncorrectly();

}

private void processDataRxIncorrectly() {

Observable.fromCallable(() -> processLargeDataSet(

loadLargeDataSet()))

.observeOn(AndroidSchedulers.mainThread()) // Observing on

the main thread

.subscribeOn(AndroidSchedulers.mainThread()) // Incorrect:

Subscribing on the main thread

.subscribe(result -> textView.setText("Data␣processed␣



206

successfully!"),

error -> textView.setText("Error␣processing␣data

"));

}

// Mock method to simulate data processing

private String processLargeDataSet(List<String> largeDataSet) {

// Simulate processing the dataset

for (String item : largeDataSet) {

// Simulate complex processing by sleeping

try {

Thread.sleep(10); // This sleep is just to simulate

long processing

} catch (InterruptedException e) {

e.printStackTrace();

}

}

return "Processed";

}

// Mock method to simulate loading data

private List<String> loadLargeDataSet() {

List<String> dataSet = new ArrayList <>();

for (int i = 0; i < 10000; i++) {

dataSet.add("Item␣" + i);

}

return dataSet;
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}

}

Explanation: When onCreate is invoked on the Activity, the application starts a long task on the main

thread, which is also in charge of rendering the UI. This leads to the application appearing to take a long

time to start, as the task must complete first.

Memory Leak

User: Give me an example of an Activity leak in android without static fields.

Output:

public class LeakActivity extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_leak);

// Starting a long-running thread with an inner class holding a

reference to the Activity

new Thread(new Runnable() {

@Override

public void run() {

// Simulate long-running task

try {

Thread.sleep(100000); // Sleep for 100 seconds

} catch (InterruptedException e) {

e.printStackTrace();

}
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}

}).start();

}

}

Explanation: When the Runnable is constructed, it holds a reference to the Activity that is spawning it,

and prevents the destruction of it until after the Runnable is done executing, even if the user navigates away.

Null Pointer Exception

User: Give me source code in java for an android application that exhibits a non-trivial null pointer excep-

tion.

Output:

public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

}

// Method to launch SecondActivity

public void launchSecondActivity(View view) {

Intent intent = new Intent(this, SecondActivity.class);

intent.putExtra("extra_data", "Hello,␣SecondActivity!");

startActivity(intent);

}

}
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public class SecondActivity extends AppCompatActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_second);

// Attempting to retrieve the extra data and display it

String data = getIntent().getStringExtra("wrong_key"); // This

key is incorrect

TextView textView = findViewById(R.id.text_view);

textView.setText(data.toUpperCase()); // This line can throw a

NPE if data is null

}

}

Explanation: When the SecondActivity is created, it looks up the incorrect key in its Intent, which leads

to a NullPointerException when it is used without verifiying it as non-null.

View Hierarchy

User: Give me a non-trivial example of an android application that uses a view hierarchy that is too deep.

Output:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android

"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:orientation="vertical">
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<LinearLayout

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="vertical">

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Personal␣Information" />

<LinearLayout

android:layout_width="match_parent"

android:layout_height="wrap_content"

android:orientation="horizontal">

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="First␣Name:" />

<EditText

android:layout_width="match_parent"

android:layout_height="wrap_content" />

</LinearLayout >

<!-- Additional nested LinearLayouts for Last Name, Email, etc.

-->

</LinearLayout >

<!-- Similar nested structures for Contact Details, Preferences ,

etc. -->

</LinearLayout >
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Explanation: When rendering a layout, each nesting level requires the UI framework to perform more

measurements, which can lead to performance issues.
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