
Fissile Type Analysis: Modular Checking
of Almost Everywhere Invariants

Devin Coughlin Bor-Yuh Evan Chang
University of Colorado Boulder

{devin.coughlin,evan.chang}@colorado.edu

Abstract
We present a generic analysis approach to the imperative relation-
ship update problem, in which destructive updates temporarily vio-
late a global invariant of interest. Such invariants can be conveniently
and concisely specified with dependent refinement types, which are
efficient to check flow-insensitively. Unfortunately, while traditional
flow-insensitive type checking is fast, it is inapplicable when the
desired invariants can be temporarily broken. To overcome this lim-
itation, past works have directly ratcheted up the complexity of
the type analysis and associated type invariants, leading to ineffi-
cient analysis and verbose specifications. In contrast, we propose a
generic lifting of modular refinement type analyses with a symbolic
analysis to efficiently and effectively check concise invariants that
hold almost everywhere. The result is an efficient, highly modular
flow-insensitive type analysis to optimistically check the preserva-
tion of global relationship invariants that can fall back to a precise,
disjunctive symbolic analysis when the optimistic assumption is vio-
lated. This technique permits programmers to temporarily break and
then re-establish relationship invariants—a flexibility that is crucial
for checking relationships in real-world, imperative languages. A
significant challenge is selectively violating the global type consis-
tency invariant over heap locations, which we achieve via almost
type-consistent heaps. To evaluate our approach, we have encoded
the problem of verifying the safety of reflective method calls in
dynamic languages as a refinement type checking problem. Our
analysis is capable of validating reflective call safety at interactive
speeds on commonly-used Objective-C libraries and applications.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords almost everywhere invariants; dependent refinement
types; almost type-consistent heaps; reflection; Objective-C

1. Introduction
Modular verification of just about any interesting property of pro-
grams requires the specification and inference of invariants. One
particularly rich mechanism for specifying such invariants is depen-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535855

dent refinement types [38], which have been applied extensively to,
for example, checking array bounds [12, 31, 32, 37]. Refinement
types are compelling because they permit the specification of rela-
tionships in a type system framework that naturally admits modular
checking. For example, a modular refinement type system can relate
an array with an in-bounds index or a memory location with the lock
that serializes access to it.

A less well-studied problem that also falls into a refinement type
framework is modularly verifying the safety of reflective method call
in dynamic languages. Reflective method call is a dynamic language
feature that enables programmers to invoke a method via a run-time
string value called a selector. In many languages, these calls have
become commonplace in libraries as a mechanism to decouple client
and framework code. Yet while they are powerful and convenient,
reflective method calls introduce a new kind of run-time error: the
method named by the selector may not exist.

Our key observation about modularly verifying reflective call
safety is that the essential property to capture and track through the
program is the relationship between a responder (the object on which
the method is invoked) and a valid selector. In particular, the verifier
does not need to determine the actual string value as long as it can
ensure that the “responds-to” relationship between the object and the
selector holds at the reflective call site. This observation is crucial
because the point where this relationship invariant is established
and where the selector is known (usually in client code) is likely far
removed from the point where the reflective call is performed and at
which the invariant is relied upon (usually in framework code).

The imperative relationship update problem. A significant chal-
lenge in checking relationship invariants in dynamic, imperative
programming languages is reasoning precisely about destructive up-
dates of related storage locations, such as local variables on the stack
and object fields on the heap. To illustrate this issue, consider an
object o with an (object) invariant specifying a relationship between
two fields o.f and o.g. For example, o.f could point to an object
that should respond to a selector stored in o.g. We can then use this
invariant to show that a reflective method call on o.f using selector
o.g is safe. Again, there are many other interesting properties that
require specification of relationships (e.g., o.f is an array with an
in-bounds index stored in o.g, or o.f is a monitor object guarded
by the lock stored in o.g).

Now consider a call o.updateRelation(p) to a simple method
updateRelation that updates fields o.f and o.g with the corre-
sponding fields from the argument p:

def updateRelation(x) = Ê self.f = x.f; Ë self.g = x.g; Ì

where three program points Ê to Ì are marked explicitly. Suppose
that fields p.f and p.g of object p have the corresponding rela-
tionship with each other as those fields of o (e.g., p.f responds to
p.g). Then it is clear that after a call to o.updateRelation(p),

1

the relationship invariant between o.f and o.g should still hold.
This property seems obvious, but two issues make it challenging to
verify: (1) a standard, flow-insensitive type analysis by itself is in-
sufficient and (2) sound symbolic reasoning about potential aliasing
requires an expensive disjunctive analysis.

Issue 1 arises because the first assignment violates the type
refinement on self.f. In our reflective call safety example, after the
assignment, the new self.f (holding the value passed in x.f) might
not respond to the old self.g. Switching the order of assignments
does not help: then after the first assignment, the old self.f might
not respond to the new self.g.

Problems arising from imperative relationship updates have been
studied in the context of array bounds checking [12, 32, 37]. To
deal with Issue 1, these type systems either require simultaneous
relationship updates [12] or drop flow-insensitivity altogether and
move to a flow-sensitive treatment of typing [32, 37]. In contrast to
a flow-insensitive invariant, the type of a location in a flow-sensitive
treatment is not fixed globally and is permitted to vary.

We argue that for the relationship update problem, computing
new types at every program point is overly pessimistic. Although the
ideal flow-insensitive type invariant imposed by the refinement on
the self.f field is broken at program point Ë, it is restored almost
immediately at point Ì. While the blocks of code between violations
and restorations (e.g., points Ê to Ì) require at least flow-sensitivity,
a fast flow-insensitive analysis can still be effective in checking that
the relationship invariant is preserved everywhere else.

Issue 2 arises in the above example because we must reason
about (potentially) two concrete objects: the object pointed to by
self and the (possibly same) object pointed to by x. While this code
satisfies the desired property regardless of whether or not self and x
are aliases, the analysis must consider both cases. Consider a slight
variant where, for example, an assignment self.f = null occurs
before point Ê. A sound analysis must detect a bug in this variant
(when self and cb are aliases).

Prior approaches (e.g., [1, 2, 18, 32]) enable strong updates in
some situations by reasoning about concrete objects one-at-a-time.
While one-at-a-time reasoning is sound, it is insufficiently precise
for even this unextraordinary example. In particular, a disjunctive
analysis (e.g., a path-sensitive analysis) must reason about two cases:
(1) where there is one concrete object—self and x are aliases—and
(2) where there are two objects—self and x are not aliases.

We also argue that directly augmenting a type system to han-
dle temporary invariant violations or other flow-analysis issues is
overly specific. The imperative relationship update problem applies
to checking just about any property that requires relational invari-
ants. In contrast to the aforementioned works, the essence of our
approach is to mix a property-specific refinement type system with
a generic, symbolic flow analysis to handle temporary violations of
the type invariant. The symbolic analysis performs execution-based
reasoning and decouples issues like flow- and path-sensitivity from
the particular type abstraction of interest.

Fissile type analysis. We propose flow-insensitive storage location
(FISSILE) type analysis—a framework for enriching a dependent re-
finement type system to tolerate temporary violations via a generic,
symbolic, separation logic-based, flow analysis. The result is an
analysis that soundly checks a type invariant that holds almost every-
where. When the fast, flow-insensitive analysis detects an invariant
violation, FISSILE type analysis splits the type environment (which
relates storage locations to storage locations) into two components:
(1) relationships between symbolic values (i.e., refinement types
lifted to values) and (2) the locations where those values are stored
(i.e., a symbolic memory). The symbolic analysis permits bounded
violation of the storage location property and takes over until the
type invariant is restored, at which point the fast flow-insensitive
analysis resumes. As illustrated in the above example, we must sup-

port bounded relationship violations not only among local variables
but also among a number of heap locations. Supporting bounded
violations of heap locations is a significant challenge.

When applied to relationships that hold almost everywhere, FIS-
SILE type analysis addresses the imperative relationship update prob-
lem while still maintaining two key benefits of flow-insensitivity:

1. It is nearly as fast as a flow-insensitive analysis (5,000 to 38,000
lines of code per second—see Section 4), since it begins with
the optimistic assumption that the invariant holds everywhere
and then only has to reason precisely about the relatively few
program locations in which any relationships are violated.

2. It permits the vast majority (99.95%) of method type signatures
to be flow-insensitive. Flow-insensitive type signatures do not
need to specify the effect of the method on the heap. Contrast
this to a modular, flow-sensitive analysis that has summaries
specifying the effects on all methods, in essence, to rule out the
pessimistic assumption that any callee could violate the invariant.

In summary, we make the following contributions:

• We describe the FISSILE type analysis framework for intertwined
fast type and precise symbolic analysis of almost flow-insensitive
storage location properties and instantiate it to check reflective
call safety. Our framework is built on the observation that flow-
insensitive type invariants on mutable storage locations really
serve two roles: specifying facts about the values stored in them
and constraining what values are allowed to be stored in them.
We define two generic operations to handoff between the type
and symbolic analyses that essentially either decouples or relinks
these roles (Section 3.2).

• We introduce the notion of almost type-consistent heaps that
(at the concrete level) splits the overall heap into two regions:
one explicit region where locations are permitted to be type
inconsistent and one implicit region where locations are type
consistent up to encountering a location that is potentially in-
consistent. We then define type-consistent materialization and
summarization operations that permit transitioning an arbitrary
number of locations with any connectivity relation between the
two regions. With materialized locations, we thus enable strong
update reasoning in our disjunctive symbolic analysis. These
capabilities are critical for supporting bounded relationship vio-
lations among an arbitrarily bounded number of heap locations
(Sections 2.2, 3.3, and 3.4).

• A key challenge in verifying re-establishment of violated re-
finement relationships is that the code that breaks a relationship
may be in one module while the storage for that relationship is
in another. We introduce symbolic summaries that enable pro-
grammers to specify encapsulated relationship storage and thus
retain modular checking for cross-module bounded violations
(Sections 2.3 and 3.5).

• We evaluate the effectiveness of our approach to checking
reflective call safety on a suite of Objective-C libraries and
applications and on code snippets posted by inexperienced
developers on public forums (Section 4).

2. Overview
In this section, we present an example that illustrates the main
challenges in permitting temporary violations of type consistency,
particularly with respect to heap-allocated objects. Our examples are
drawn from verifying reflective call safety in real-world Objective-C
code, which require such temporary violations to be able to use
simple, global type invariants. Objective-C, like C++, is an object-
oriented layer on top of C that adds classes and methods. We will
describe its syntax as needed.

2

1 @interface Button

2 - (void)drawState:(String * L � in {‘Up’, ‘Down’} M)state {

3 String *m = ...
4 CustomImage *image = ...
5 m = ["draw" append:state];
6 [image setDelegate:self selector:m];
7 [image draw];
8 }
9 - (void)drawUp { ... }

10 - (void)drawDown { ... }
11 @end
12 @interface CustomImage {

13 Object * L �respondsTo selector()→void M delegate; String *selector;

14 }

15 - (void)setDelegate:(Object * L �respondsTo s()→void M)d

16 selector:(String *)s {
17 self->delegate = d;
18 self->selector = s;
19 }
20 - (void)draw { [self->delegate performSelector:self->selector]}; }
21 @end

Figure 1. Verifying reflective call safety requires knowing responds-
to relationships between delegates and selectors.

The example in Figure 1, adapted from the ShortcutRecorder
library, demonstrates how programmers use reflective method call
to avoid boilerplate code and to decouple components. Ignore the
annotations in double parentheses L · M for now—these denote our
additions to the language of types. The Button class (lines 1–
11) contains a drawState: method (lines 2–8) that draws the
button as either up or down, according to whether the caller passes
the string "Up" or "Down" as the state argument. A class is
defined within @interface...@end blocks; an instance method
definition begins with -. Methods are defined and called using
infix notation (Smalltalk-inspired syntax). For example, the code
at line 6 calls the setDelegate:selector: method on the image
object with self as the first argument and m as the second. This
call is analogous to image->setDelegateSelector(self,m) in
C++. Now, a Button object draws itself by using the CustomImage
to call either drawUp or drawDown. The CustomImage sets up a
drawing context and reflectively calls the passed in selector on
the passed in delegate at line 20—the delegate and selector pair
form, in essence, a callback. This syntax [o performSelector:s]
for reflective call in Objective-C is analogous to o.send(s) in
Ruby, getattr(o,s)() in Python, and o[s]() in JavaScript. In
this case, the delegate is set to the Button object itself, and the
selector is constructed by appending the passed in state string to
the string constant "draw" (lines 5–6). Constructing the selector
dynamically reduces boilerplate by avoiding, for example, a series
of if statements inspecting the state variable. Using reflection
for callbacks also improves decoupling—CustomImage is agnostic
to the identity of the delegate. This delegate idiom is one common
way responder-selector pairs arise in Objective-C and other dynamic
languages. The use of reflection in this example comes at a cost:
while the Objective-C type system statically checks that directly
called methods exist, it cannot do so for reflective calls—these are
only checked at run time. In this work we present an analysis that
enables modular static checking of reflective call safety while still
maintaining the benefits of reduced boilerplate. To prove that the
program is reflection-safe, we use refinement types [19, 20, 31] to
ensure that the responder does, in fact, respond to the selector.

To see how these “responds-to” relationships arise, consider the
reflective call at line 20. It will throw a run-time error if the receiver
does not have a method with the name specified in the argument—
conversely, to be safe, it is sufficient that self->delegate re-
sponds to self->selector. There is an unexpressed invariant
that requires that for every instance of CustomImage, the object

stored in the delegate field must respond to the selector stored
in the selector field. We capture this invariant by applying the
respondsToselector()→void refinement to the delegate field at
line 13. This refinement expresses the desired relationship between
the delegate field and the selector field. The method signa-
ture ()→void states that the selector field holds the name of a
method that takes zero parameters with return type void. This ex-
presses an intuitive invariant that, unfortunately, does not quite hold
everywhere. Still, our framework is capable of using this almost
everywhere invariant to check that the required relationships hold
when needed—we revisit this point in Section 2.1.

Working backward, we see that the setDelegate:selector:
method updates the delegate and selector fields with the values
passed as parameters—this demonstrates the need, in a modular
analysis, for respondsTo refinements to apply to parameters as
well as fields. We annotate parameter d to require that it responds to
s. Any time the method is called, the first argument must respond to
the second. Thus at the call to setDelegate:selector: at line 6,
we must ensure that self responds to m. In the caller (i.e., the
client of CustomImage), we know a precise type, Button, for the
first argument (whereas from the callee’s point of view it is merely
Object). This means we know that, from the caller’s point of view,
the delegate will respond to the selector if the selector is a method on
Button—so if we limit the values m can take on to either"drawUp"
or"drawDown" the respondsTo refinement in the callee will be
satisfied. We write in for the refinement that limits strings to one of
a set of string constants (i.e., a union of singletons). For simplicity in
presentation, our only refinement for string invariants is in, although
more complex string reasoning is possible.

2.1 Insufficient: Flow-Insensitive Typing of Refinements
Restricting values stored in variables, parameters, and fields with
respondsTo relationships and in refinements captures the essential
invariants needed to verify reflective call safety. Here, we show
why a flow-insensitive type analysis with these refinements is
insufficient in the presence of imperative updates. We focus on
the most interesting case: updates to fields of heap-allocated objects.

Refinement types {v : B | R(v)} consist of two components: the
base type B, which comes from the underlying type system, and
the (optional) refinement formula R, which add restrictions on the
value v beyond those imposed by the base type. As a notational
convenience, we write them without the bound variable and assume
the bound variable is used as the first argument of all atomic
relations, writing for example, Int �≥ 0 instead of {v : Int | v≥ 0}.
Subtyping with refinement types. We assume the refinement type
system of interest comes equipped with a subtyping judgment
Γ ` T1 <: T2 that is a static over-approximation of semantic in-
clusion (i.e., under a context Γ, the concretization of type T1 is
contained in the concretization of T2). As an example, we consider
informally subtyping with the respondsTo and the in refinements
for reflective call safety. For in refinements, this is straightforward:
an in-refined string is a subtype of another string if the possible con-
stant values permitted by the first are a subset of those required by
the second. The situation for subtyping the respondsTo refinement
is complicated by the fact that a relationship refinement can refer
to the contents of related storage locations. Consider the Button *
type in the drawState: method. The type environment, Γ, limits
the local variable m to hold either"drawUp" or"drawDown" . Since
Button * is a subtype of Object * in the base Objective-C type
system and Button has both a drawUp and a drawDown method,
Button * is a subtype of Object * � respondsTom in this envi-
ronment. If, for example, Γ(m) instead had refinement in{‘Fred’}
the above subtyping relationship would not hold. Note that for pre-
sentation we have elided the method type on the respondsTo here;
we do so whenever it is not relevant to the discussion.

3

Type checking field assignments. We check field assignments
flow-insensitively with a weakest-preconditions–based approach
similar to the Deputy type system [12] (although extended to handle
subtyping). Here, we focus on why flow-insensitive typing raises an
alarm after the field assignment self->delegate = d at line 17
(see Section 3 for more details on how checking proceeds). To check
this assignment, we first augment the type environment with fresh
locals representing the fields of the assigned-to object and then
check the assignment as if it were a local update. Conceptually we
temporarily bring field storage locations into scope and give them
local names. Let this augmented type environment be

Γa = Γ[d : Object * � respondsTos]
[delegate : Object * � respondsToselector]

for some Γ and where we explicitly show the two respondsTo
refinements (for presentation, we use the field names as the fresh
locals). Checking the assignment, we end up with the subtyping
check Γa ` Γa(d) <: Γa(delegate), which expresses the invariant
that the relationship between delegate and selector should be
preserved across this assignment. Note that while this subtyping
check is what is prescribed for assignment in a standard, non-
dependent type system, the weakest-preconditions–based approach
ensures that this same check is also required (and thus also fails)
for the next line (line 18) where selector is updated. Although
these two assignments are each unsafe in isolation, considered in
combination, they are safe. The first assignment breaks the invariant
that the delegate field should respond to selector, but the second
restores it.

These temporary violations cannot be tolerated by a flow-
insensitive type analysis because, in imperative languages, flow-
insensitive types on storage locations really perform two duties.
First, they express facts about values: any value read from a variable
with type respondsTom can be assumed to respond to the value
stored in location m. But second, they express constraints on muta-
ble storage: for the fact to universally hold, the type system must
disallow any write to that variable of a value that does not respond to
m. These constraints are fine for standard types but are problematic
for relationships that are established or updated in multiple steps.

2.2 Tolerating Violation of Relationship Refinements
As we previewed in Section 1, we argue that moving to a flow-
sensitive treatment of typing is too pessimistic. A flow-sensitive type
analysis drops the global constraints on mutable storage locations
that enable concise specification. Instead it focuses on tracking facts
on values as they flow through the program, which then require
more verbose summaries. Other possible alternatives are to change
the programming language to disallow temporary violations (e.g.,
by requiring simultaneous updates) or to somehow generalize the
type invariant to capture the temporary violations of the simpler
invariant; we argue that these approaches are too specific.

Our work is motivated by the observation that although program-
mers do sometimes violate refinement relationships, most of the
time these relationships hold—they are almost flow-insensitive. To
set up our notion of almost type-consistent heaps, we first make
explicit a standard notion of type-consistency.

Definition 1 (Type-Consistency). A storage location is type-
consistent if the values stored in it and all locations in its reach-
able heap conform to the requirements imposed by their flow-
insensitive refinement type annotations. Thus, a storage location
is type-inconsistent if either the value stored in it immediately
without pointer dereferences violates a type constraint or there is
a type-inconsistent location transitively in its reachable heap. We
distinguish these two cases of immediately type-inconsistent versus
only transitively type-inconsistent.

In this work we rely on two premises about how programmers
violate refinement relationships over storage locations on the heap:

Premise 1 All of the heap is type-consistent most of the time.

Premise 2 Most of the heap is not immediately type-inconsistent all
of the time. In other words, only a few locations are responsible
for breaking the global type invariant at any time.

Following Premise 1, we apply type analysis when the heap is type-
consistent and switch to symbolic analysis when the type invariant is
violated. Under this premise, these periods of violation are bounded
in execution—and short enough that the path explosion from precise
symbolic analysis is manageable.

To enable the intertwining of a type and a symbolic analysis,
we require two conceptually inverse operations, symbolization
and typeification, that are applied when switching between the
two kinds of analyses. Symbolization splits a type environment Γ

(which expresses relationship constraints between storage locations)
into a symbolic fact map Γ̃ and a symbolic memory M̃. The
fact map expresses relationships between symbolic values (i.e.,
refinement types lifted to the symbolic domain) and the memory
indicates where those values are stored (symbolic local variables
and heap). So, for example, splitting a type environment Γ with
[d : Object * � respondsTos] will result in a fact map Γ̃ with
fact [ṽ1 : Object * � respondsTo ṽ2] and a memory M̃ which
maps d to ṽ1 and s to ṽ2. Here ṽ1 and ṽ2 are arbitrary symbolic
names for values initially stored in d and s upon symbolization. In
order for a symbolization to be sound, the symbolized fact map
must be “no stronger” than the original type environment. A type
environment Γ is not directly comparable to a symbolic fact map Γ̃,
so we capture the required relationship with a “subtyping under
substitution” judgment Γ <:θ̃−1 Γ̃ that, in essence, converts the
symbolic fact map to a type environment before performing the
comparison. We perform this conversion with a substitution θ̃−1,
constructed from the symbolic memory, that maps symbolic values
to the local variables that store them. Typeification fuses Γ̃ and M̃
back into a type environment Γ. In this case, the type environment
under the forward memory substitution must be no stronger than the
fact map: Γ̃ <:θ̃ Γ. We describe these relations fully in Section 3.3.

Premise 2 is at the core of our approach to soundly handling
temporary type violations on heap locations. The key idea is a
view of the heap as being made up of two separate regions: (a)
a small number of individual locations that are allowed to be
immediately type-inconsistent and (b) an almost type-consistent
region consisting of (fully) type-consistent or only transitively type-
inconsistent locations, which we illustrate intuitively below:

okheap
immediately type-

inconsistent

In the illustration, the dark node represents one location that is
immediately type-inconsistent, while the light rectangle around it
represents the almost type-consistent region. Note that there may be
pointers (shown as arrows) to the this location where such objects
are not type-consistent but only transitively type-inconsistent. In
the analysis, the locations in the almost type-consistent region
are summarized and represented by an atomic assertion okheap,
while the possibly immediately type-inconsistent locations are
materialized and explicitly given in the symbolic memory M̃.

During symbolic analysis, we can materialize explicit storage
locations from the almost type-consistent region okheap and thus
update them to hold values that do not match their expected types
(i.e., to become immediately type-inconsistent). When the materi-
alized storage is again consistent with its expected types, we can
summarize it back into okheap. When the heap consists entirely of

4

okheap, we know that the entire heap is fully type-consistent and we
can return to type checking. Given this mechanism, we can easily
allow for more than one materialization at a time as long as we
account for possible aliasing with already materialized locations—
Premise 2 suggests that this explosion is also manageable. As an
aside, we see okheap as a specialization of separating implication
−N from separation logic [30] for type-consistency. Materializing
from okheap corresponds to removing a location from its concretiza-
tion and introducing an implication awaiting type-consistency of the
location (intuitively, the hole in the above illustration). Summarizing
into okheap corresponds to putting a location into its concretization
and eliminating an implication (see Section 3.3).

2.3 Modular Checking and Symbolic Summaries
Flow-insensitive type signatures are effective for achieving method-
level modularity, but they do not summarize the effect that a method
has on the heap. Such heap effect summaries are needed when
the code that breaks and restores a relationship invariant is spread
between multiple methods. Consider again the temporary invariant
violation at line 17 in Figure 1, but suppose that instead of updating
the delegate and selector fields directly, the programmer used the
accessor idiom with setDelegate: and setSelector: methods:

17 [self setDelegate:d];
18 [self setSelector:s];

Each of these methods in isolation break the relationship invariant,
but they are safe when used in combination. Flow-insensitive type
signatures specify neither alias information nor the effect of the
method on the heap—a richer specification is needed to check such
cross-method relationship violations.

Rather than complicate the type analysis with flow-sensitive
method type signatures or effect annotations, we enrich the sym-
bolic analysis with the ability to summarize methods via pre- and
post-conditions describing the structure of the heap (in separation
logic [30]). For example, the symbolic summary for the setDele-
gate: method with a parameter named p would have input heap
self 7→ {delegate :−} and output heap self 7→ {delegate : p}. This
summary says that (1) regardless of its contents on method entry, on
method exit the delegate field contains the passed in the parameter
and (2) the method does not touch any fields other than delegate.
When symbolically executing the caller of one of these methods, we
can modularly apply the summary, as long we ensure conformance
to the summary when checking the method body (Section 3.5).

Uniquely, we need symbolic method summaries only as a rare
escape hatch because of an intertwined approach: within symbolic
analysis, we can apply a nested type analysis with a different local
type invariant. This enables using flow-insensitive method types
within symbolic analysis and other ways to leverage symbolic
reasoning outside of the type system (see Section 3.5). On one hand,
flow-insensitive type signatures are imprecise but simple to express
and fast to check. On the other, symbolic method summaries can
precisely describe method heap effects but are complex to express
and slow to check. We therefore can obtain the same precision as
a fully symbolic analysis but still take advantage of the simpler,
more efficient type analysis where the global type invariant holds.
In contrast to flow-sensitive approaches (e.g., [32]), we do not need
heap effect summaries for all methods—but rather only for those
very few (0.05%) that leave a relationship invariant violated.

3. Storage Type and Symbolic Value Analysis
In this section, we provide an example-driven description of how
FISSILE type analysis intertwines flow-insensitive type analysis
and path-sensitive symbolic analysis to modularly check refinement
relationships between storage locations. For reference, we give the
full details of the type and symbolic analyses in our TR [13]; here

we focus on the core contributions of our framework and illustrate
them via an instantiation to check reflective call safety.

Preliminaries: Syntax of language and types. We describe FIS-
SILE type analysis over a core imperative programming language
of expressions e with objects and reflective method call. For
presentation purposes, we have only three types of values: unit,
strings, and objects. We assume disjoint syntactic classes of identi-
fiers for program variables x,y,z, field names f , method names
m, and parameter names p, as well as a distinguished identi-
fier ‘self’ that stands for the receiver object in methods. Pro-
gram expressions include literals for unit 〈〉, strings c, objects
{var f : T = e,def m(p : Tp) : Bret[S] = e}. The ‘var’ declarations
specify mutable fields f of types T , and the ‘def’ declarations
describe methods m with parameters p of types Tp and with return
type Bret. The return type is a base type, which does not itself
have refinements (but could have refinements on its fields in the
case of an object base type). An overline stands for a sequence
of items. Methods can also be optionally annotated with symbolic
summaries S, which we revisit in Section 3.5. Objects are heap
allocated. Local variable binding ‘let x : T = e1 in e2’ binds a local
variable x of type T initialized to the value of e1 whose scope is
e2. We include one string operation for illustration: string append
x1 @ x2. Then, we have reads of locals x and fields x. f , writes
to fields x. f := y, basic control structures for sequencing e1;e2
and branching e1 8 e2. For presentation, we use non-deterministic
branching, as the guard condition of an ‘if-then-else’ expression
has no effect on flow-insensitive type checking and can be reflected
in the symbolic analysis in the usual way (i.e., by strengthening
the symbolic state with the guard condition). Finally, we have two
method call forms: one for direct calls z.m(x) and one for reflective
calls z.[y](x). A call allocates an activation record for the receiver
object z and parameters x; it then dispatches with the direct name m
or the reflective selector y. Types T are a base type B for either unit
Unit, strings Str, or objects {var f : Tf , def m(p : Tp)→Bret} with
a set of refinements R, which are interpreted conjunctively.

The framework is parametrized by the language of refinements R
needed to specify the invariants of interest, and refinements should
be parametric with respect to the syntactic class of identifiers ι .
We decorate with a superscript RL, RF, or RS when we want to
emphasize or make clear over which syntactic class of identifiers
the refinement ranges: locals x, fields f , or symbolic values ṽ
(see Section 3.2), respectively. Because types include refinements,
types are parametrized as well, written T L, T F, or T S, as are type
environments Γ.

3.1 Instantiation: The Reflection Checking Type Refinement
To verify reflective call safety, we have seen that the key property
is the ‘respondsTo ι(p : Tp)→Bret’ refinement that says an object
must respond to the value named by ι with the given method type.
As a symbolic fact, it says that an object must respond to the
value named by ι . But as a type invariant on storage locations,
the refinement also constrains both the storage location on which the
refinement is applied and the storage location named by ι to hold a
responder and a correspondingly valid selector for it. We also need
some refinements on string values, such as the union of singletons:
‘in {c1, . . . ,cn}’ which says the value is one of the following (string)
literals c1, . . . ,cn.

To type expressions, we use the standard typing judgment form
Γ ` e : T that says in a type environment Γ, expression e has type T .
A type environment Γ is a finite map from identifiers to types, which
we view as the types assigned to program variables (i.e., ΓL ` e : T L

for emphasis). The standard typing judgment form emphasizes that
Γ is a flow-insensitive invariant.

5

T-REFLECTIVE-METHOD-CALL
Γ(z) = {···} � respondsTo y(p : Tp)→Bret Γ <:[p:x,self:z] p : Tp,self : Γ(z)

Γ ` z.[y](x) : Bret �

SUB-OBJ-RESPONDSTO-REFL
Γ ` Γ(x) <: Str � in {c1, . . . ,cn}

∀i∈1..n B has a method named ci with signature (p : Tp)→Bret

Γ ` B � · · · <: B � respondsTo x(p : Tp)→Bret

Figure 2. Flow-insensitive typing for reflective method calls. The
respondsTo refinement is checked on reflective dispatch.

We provide the full type system for reflective call safety in our
TR [13]—here we focus on the rules needed to check reflective
calls given the desired type invariant (Figure 2). The T-REFLECTIVE-
METHOD-CALL rule for checking a reflective method is itself not
complicated: we require that the responder object z has a refinement
guaranteeing that it responds to the selector y with method type sig-
nature (p : Tp)→Bret. The arguments to call are checked against the
specified types of the parameters via Γ <:[p:x,self:z] p : Tp,self : Γ(z).
We write Γ <:θ Γ′ as the lifting of subtyping to type environments
under a substitution θ from variables on the right to variables on the
left. The type of the call is then the return base type of the method
(as expected) without any refinements Bret �.

The respondsTo refinement is introduced via subtyping. The
subtyping judgment Γ ` T <: T ′ says that in typing environment
Γ, type T implies type T ′. The SUB-OBJ-RESPONDSTO-REFL sub-
typing rule combines information from base object types and the
environment to introduce respondsTo. This rule says that for any
location x that is one of a set of selector strings c1, . . . ,cn, then any
object of base type B with methods of the appropriate signature for
all c1, . . . ,cn responds to the method named by x with that signature.
We also have subtyping rules expressing component-wise implica-
tion of refinements, conjunctive weakening of the set of refinements,
and disjunctive weakening of in refinements. For our purposes, it
does not matter how subtyping is checked as long as it is a sound
approximation of semantic subtyping. We could, for example, use
an SMT solver as in Liquid Types [31] and also replace the type
rules for string operations with an off-the-shelf string solver.

Another Instantiation: Typing for array refinements. The FISSILE
type analysis framework is parametrized by the language of refine-
ments and a decision procedure for semantic inclusion. To provide
context for our approach, we sketch another instantiation that checks
array-bounds safety—a property considered by many prior works—
with a few refinements and rules. Suppose we augment our program-
ming language to include array allocation and array access and add
two refinements: (1) hasLength, which indicates that an array has
the specified (non-zero) length and (2) indexedBy, which indicates
that the specified index is a valid index for the array—that is, that
the index is in bounds. When analyzing an array access e[x], we
check that x is a valid index into the array e by requiring that e’s
type has the refinement indexedBy x. We introduce this refinement
via subtyping with the following rule, which says that x is a valid
index for an array of length y if the environment Γ restricts x and y
such that x≥ 0 and x < y:

JΓK `SMT x≥ 0∧ x < y
Γ ` B � hasLength y <: B � indexedBy x

We verify that this condition holds by encoding the environment into
a linear arithmetic formula (written JΓK) and checking entailment
with an SMT solver (written as the judgment φ1 `SMT φ2 for
formulas φ1 and φ2). Here we map meta-variables x and y in the
typing judgment to logical variables of the same name in the SMT
entailment checking judgment.

Σ̃ ::= (Γ̃, H̃) symbolic states
Ẽ ::= · | Ẽ[x : ṽ] symbolic environments
H̃ ::= emp | ã : õ | H̃1 N H̃2 | okheap symbolic heaps
Γ̃ ::= · | Γ̃[ṽ : T S] symbolic facts
P̃ ::= Σ̃ ↓ ṽ | P̃1 ∨ P̃2 | false symbolic paths
õ ::= emp | f : ṽ | õ1 N õ2 symbolic objects
ṽ, ã, x̃, ỹ, z̃ symbolic values

Figure 3. The symbolic analysis state splits type environments into
types lifted to values and the locations where values are stored.

3.2 Symbolic Analysis State and Handoff
The type analysis is efficient but coarse. It is flow-insensitive—
constraining all storage locations to be a fixed type and the heap to
be always in a consistent state. When these constraints hold, we get
a simple and fast analysis. When they are temporarily violated, our
overall analysis can switch to a path-sensitive symbolic analysis that
continues until the constraints again hold.

We now walk through a modified version of the example from
Section 2 to describe the key components of this switch: (1) we
describe our symbolic analysis state and how we convert (“sym-
bolize”) a type environment to a symbolic state; (2) we describe
type-consistent materialization and summarization from the almost
type-consistent heap in Section 3.3; (3) we describe the proofs
of soundness for handoff, materialization/summarization, and our
overall analysis in Section 3.4; and (4) we explore the interaction
between modular symbolic analysis and the almost type-consistent
heap in Section 3.5.

Symbolic analysis state. In the symbolic analysis, we split a type
environment Γ into a symbolic environment Ẽ and a symbolic state
Σ̃ (Figure 3). A symbolic environment Ẽ provides variable context:
it maps variables to symbolic values ṽ that represent their values.
A symbolic state Σ̃ consists of two components: a symbolic fact
context Γ̃, mapping symbolic values to the facts (symbolic types)
known about them and a symbolic heap H̃. A symbolic heap H̃
contains a partially-materialized sub-heap that maps addresses (ã) to
symbolic objects (õ), which are themselves maps from field names
(f) to symbolic values. We write symbolic objects and heaps using
the separating conjunction N notation borrowed from separation
logic [30] to state that we refer to disjoint storage locations.

Symbolic values ṽ correspond to existential, logic variables. For
clarity, we often use ã to express a symbolic value that is an address
and similarly use x̃, ỹ, z̃ for values stored in the corresponding
program variables x,y,z. Relationship refinements in Γ̃ are expressed
in terms of types lifted to symbolic values (T S)—that is, the
refinements state relationship facts between values and not storage
locations (like the refinements in Γ for typing). Our overall analysis
state is a symbolic path set P̃, which is a disjunctive set of singleton
paths Σ̃ ↓ x̃. A singleton path is a pair of a symbolic state and
a symbolic value corresponding to the return state and value,
respectively.

The symbolic heap H̃ enables treating heap locations much like
stack locations, capturing relationships in the symbolic context Γ̃,
though certainly more care is required with the heap due to aliasing.
A symbolic heap H̃ can be empty emp, a single materialized object
ã : õ with base address ã and fields given by õ, or a separating
conjunction of sub-heaps H̃1 N H̃2. Lastly and most importantly, a
sub-heap can be okheap, which represents an arbitrary but almost
type-consistent heap. This formula essentially grants permission to
materialize from the almost type-consistent heap and, as discussed in
Section 2.2, is the key mechanism for soundly transitioning between
the type and symbolic analyses.

Handoff from type checking to symbolic execution. Consider the
formal language version of the callback example from Section 2.2:

6

T-SYM-HANDOFF

Γ
−−−−−−→
symbolize Γ̃, Ẽ Ẽ ` {Γ̃,okheap}e{

∨
i

(Γ̃i,okheap) ↓ x̃i}

Γ̃i, Ẽ
−−−−→
typeify Γ Γ̃i ` Γ̃i(x̃i) <: T [Ẽ] for all i

Γ ` e : T

C-STACK-SYMBOLIZE
Ẽ is 1-1 Γ <:Ẽ−1 Γ̃

Γ
−−−−−−→
symbolize Γ̃, Ẽ

C-OBJECT-SYMBOLIZE
Γ

F = fieldtypes(B) õ is 1-1 Γ
F <:õ−1 Γ̃

B
−−−−−−→
symbolize Γ̃, õ

M-MATERIALIZE
Σ̃ = Γ̃, H̃ okheap ∈ H̃ ã /∈ dom(H̃)

Γ̃(ã) = B � · · · B
−−−−−−→
symbolize Γ̃

fields, õ Γ̃
′ = Γ̃, Γ̃fields

Σ̃
−−−−−−−→
materialize

(Γ̃′,(H̃ N ã : õ)
)
∨

∨
ỹ∈mayaliasΣ̃(ã)

Σ̃|ã=ỹ

SYM-WRITE-FIELD

Ẽ ` {Γ̃, H̃}x. f := y{Γ̃, H̃
[
Ẽ(x) :

(
H̃(Ẽ(x))[f : Ẽ(y)]

)]
↓ Ẽ(y)}

M-SUMMARIZE

okheap ∈ H̃ Γ̃(ã) = B � · · · Γ̃, õ
−−−−→
typeify B

Γ̃,(H̃ N ã : õ)
−−−−−−−→
summarize Γ̃, H̃

C-OBJECT-TYPEIFY
Γ̃ <:õ fieldtypes(B)

Γ̃, õ
−−−−→
typeify B

SUB-TYPES-FACTS
Γ ` Γ(θ̃−1(x̃)) <: T S[θ̃−1] for all x̃ : T S ∈ Γ̃

Γ <:
θ̃−1 Γ̃

C-STACK-TYPEIFY
Γ̃ <:Ẽ Γ

Γ̃, Ẽ
−−−−→
typeify Γ

SUB-FACTS-TYPES
Γ̃ ` Γ̃(θ̃(x)) <: T [θ̃] for all x : T ∈ Γ

Γ̃ <:θ̃ Γ

Figure 4. Selected rules demonstrating how FISSILE type analysis
switches to a symbolic analysis to tolerate bounded violations.

1 { var del: {} � respondsTo sel, var sel: Str,
2 def update(d: {} � respondsTo s, s: Str): Unit =
3 self.del := d;
4 self.sel := s }

Here the update method updates the del and sel fields in sequence.
Recall that the assignment at line 3 breaks the type invariant and
the assignment at line 4 restores it. We illustrate the core operations
(Figure 4) behind FISSILE type analysis by walking through this
example. When checking this method, the type analysis will produce
a flow-insensitive type error for the assignment at line 3 and so will
switch to symbolic execution. To do so, it will (1) “symbolize”
a suitable symbolic analysis state from the type environment, (2)
symbolically execute the two field writes, and (3) attempt to “typeify”
the resultant symbolic analysis state back to the original type
environment. If this succeeds, then the type analysis can continue.

The T-SYM-HANDOFF rule formalizes this process. It says the type
checker can switch to the symbolic analysis to check an expression
e in a type environment Γ by creating (“symbolizing”) a symbolic
state representing Γ and symbolically executing e in that state. The
judgment form Ẽ ` {Σ̃}e{P̃} says that in the context of a given
symbolic local variable environment Ẽ and with a symbolic state
Σ̃ on input, expression e symbolically evaluates to a disjunction of
state-value pairs P̃ on output. Here the input facts and environment
are obtained from Γ (via the Γ

−−−−−−→
symbolize Γ̃, Ẽ judgment form),

while the input heap is initialized to a fully type-consistent heap
okheap. After symbolic execution, the resultant symbolic state must
be consistent with (“typeify to”) the original Γ, and the symbolic
facts about the resulting symbolic value must be consistent with the
inferred type T of the expression. Note that here we lift the subtyping

judgment · ` · <: · to symbolic types in the expected way. Here
T [θ̃] converts the standard type T to a symbolic type (fact) T S with a
substitution θ̃ that replaces all variable references in T ’s refinements
with symbolic values. Both the initially symbolized heap and the
finally typeified heap must consist solely of okheap—the heap is
assumed consistent on entry and must be restored on exit. The key
aspect of this handoff is that although the symbolic execution is
free to violate any of the flow-insensitive constraints imposed by
Γ, it must restore them to return to type checking. We will discuss
restoration in detail later—first we describe symbolization.

Symbolizing type environments to symbolic states. Symboliza-
tion splits a type environment Γ (which expresses type constraints
on local variables) into a symbolic fact map Γ̃ (expressing facts
about symbolic values) and a symbolic local variable state Ẽ (ex-
pressing where those values are stored). For example, consider the
type environment above at line 3, immediately before the first write:

Γ = [d : {} � respondsTo s][s : Str][self : TImage]

where TImage = {var del : {} � respondsTo sel,var sel : Str}. We
can symbolize this environment to create a symbolic environment
where Ẽ = [d : d̃][s : s̃][self : s̃elf]. Here we have created fresh
symbolic names to represent the values stored on the stack: d̃ is
the name of the value stored in local d, s̃ in local s, etc. These
symbolic values represent concrete values from a type environment
in which the storage location refinement relationships hold, so we
can safely assume that values initially stored in those locations have
the equivalent relationships, expressed as lifted types:

Γ̃ = [d̃ : {} � respondsTo s̃][̃s : Str][s̃elf : TImage]

Note that the refinement on d̃ refers to symbolic value s̃ and not
storage location s, but that the refinements on the types of the
fields of the base type of s̃elf’s fact TImage still refer to (field)
storage locations. These field refinements on the base object type
are, in essence, a “promise” that if any explicit storage for those
fields is later materialized, it must be consistent with TImage when
summarized back into okheap.

We formalize type environment symbolization in rule C-STACK-
SYMBOLIZE, which captures the requirement that the symbolized
state must over-approximate the original type environment. We
note that Ẽ−1 forms a substitution map from symbolic values to
local variable names and require that the symbolized fact map Γ̃

under that substitution be an over-approximate environment of the
original type environment Γ (rule SUB-TYPES-FACTS). In essence,
any assumptions that the symbolic analysis initially makes about
the symbolic facts must also hold in original type environment. That
Ẽ is one-to-one ensures that the inverse exists but more importantly
encodes the requirement that the newly symbolized environment
makes no assumptions about aliasing between values stored on the
stack in local variables. Note that when symbolizing a local variable
with type B � RL in a type environment, we do not lift the base type
B to the symbolic domain nor do we create storage for any of B’s
fields. That is, refinements on the fields of an object base type remain
refinements over fields, expressing both facts about the field contents
and constraints on those storage locations. This interpretation is
what permits materialized, immediately type-inconsistent objects
to point back into okheap (i.e., the almost type-consistent region).
As we detail next, with this interpretation, our analysis materializes
storage for objects from okheap on demand, which is not only more
efficient but is required in the presence of recursion.

3.3 Materialization from Type-Consistent Heaps
Returning to the callback example, recall that the analysis has sym-
bolized a state corresponding to the type environment immediately
before line 3. A symbolic heap H̃ consists of two separate regions:

7

(1) the materialized heap, a precise region with explicit storage that
supports strong updates and allows field values to differ from their
declared types (i.e., permits immediate type-inconsistency) and (2)
the okheap, a summarized region in which all locations are either
type-consistent or only transitively type-inconsistent. In a newly
symbolized analysis state, H̃ consists of solely okheap. Before the
field write at line 3 can proceed, the analysis must first materialize
storage for the TImage object pointed to by s̃elf to get:

H̃ = okheap N s̃elf 7→ {del : d̃el,sel : s̃el}

and a new fact map Γ̃ that contains the additional facts: d̃el : {} �
respondsTo s̃el and s̃el : Str.

We formalize type-consistent materialization with the C-OBJECT-
SYMBOLIZE and M-MATERIALIZE rules. Creating symbolic storage
for an object type is very similar to symbolizing a type environment.
As rule C-OBJECT-SYMBOLIZE defines, the analysis can symbolize a
type B to a symbolic object õ (mapping field names to fresh symbolic
values) and a fact map Γ̃ (facts about those values) if the assumed
facts about the values are no stronger than those guaranteed by the
object’s field types. Once the analysis has symbolized an object, it
adds the new object storage to the explicit heap and facts about the
fresh symbolic values to the fact map in rule M-MATERIALIZE.

For the symbolic analysis to perform strong updates, it must
maintain the key invariant that any two objects’ storage locations
in the explicit heap are definitely separate. When materializing an
arbitrary object, the evaluator must consider whether any of the
already materialized objects aliases with the newly materialized
object and case split on these possibilities. The split is required
because any two distinct symbolic values may in fact represent
the same concrete value. In M-MATERIALIZE, for any input state Σ̃

in which the heap contains okheap, the symbolic analysis is free
to materialize the object stored at a symbolic address ã from the
type-consistent heap. For the case where the materialized symbolic
address does not alias any address already on the explicit heap, we
symbolize a new symbolic object õ with fresh symbolic values as
described above from the base type of ã. In the case where the
address may alias some address ỹ on the materialized heap, we must
assert that ã = ỹ. We write Σ̃|ã=ỹ for any sound constraining of Σ̃

with the equality (we implement it by substituting one name for the
other and applying a meet u in the symbolic facts Γ̃). We also leave
unspecified the mayaliasΣ̃(ã) that should soundly yield the set of
addresses that may-alias ã; our implementation uses a type-based
check to rule out simple non-aliases.

This rule is quite general. It permits an arbitrary number of loca-
tions to be immediately type-inconsistent without any constraints
on connectivity, ownership, or non-aliasing. To simplify the formal-
ization of type-consistent materialization, we restrict relations ex-
pressed by refinements in the heap to be among fields within objects.
Relations between fields are captured because all of fields of the
object are symbolized at the same time (see C-OBJECT-SYMBOLIZE).
Supporting cross-object relations would merely require material-
izing multiple objects while disjunctively considering all possible
aliasing relationships and then symbolizing their fields simultane-
ously within each configuration. It would also be possible to just
materialize the fields corresponding to the specific relationships that
we wish to violate by using a field-split model [26, 28] of objects.

Symbolic execution. With the symbolization and materialization
complete, the analysis now executes the field writes at lines 3
and 4. The SYM-WRITE-FIELD rule describes symbolic execution
of writing the value of a local variable y to a field f of a base
address x. It requires that the object at the base address Ẽ(x) already
be materialized and updates the appropriate field in the symbolic
heap H̃. We give the rest of our symbolic executions rules in our
TR [13]—they are as expected. Unlike traditional symbolic analysis,

our mixed approach can soundly ensure termination by falling back
to type checking. In practice, we switch to types at the end of loop
bodies to cut back edges and cut recursion with method summaries.

Summarizing symbolic objects back into types. After execution
of the field writes, the symbolic heap at line 4 is:

H̃ = okheap N s̃elf 7→ {del : d̃,sel : s̃}.
That is, the fields now contain the values passed in as parameters.
But recall that Γ̃(d̃) = {} � respondsTo s̃ and Γ̃(s̃elf) = TImage.
In this state, the value stored in field del again responds to the
value stored in field sel—the flow-insensitive type invariant (TImage)
promised by Γ̃(s̃elf) again holds—and thus the object can be safely
summarized back into the okheap. We describe this process in rule
M-SUMMARIZE, which says that a symbolic address ã pointing to
a materialized object õ can be summarized (i.e., removed from the
explicit heap) if the object is consistent with (i.e., can be “typeified”
to) the base type required of the address in the fact map. Typeifying
a symbolic object õ to an object type B (rule C-OBJECT-TYPEIFY) is
analogous to symbolization except that it goes in the other direction.
We require that the symbolic fact map be over-approximated by the
field types of B, nicely converting it to the symbolic domain using õ
as the substitution. Note that õ does not need to be one-to-one; the
observation that this constraint is irrelevant for typeification captures
that types are agnostic to aliasing.

Once all materialized objects have been summarized (and thus
H̃ = okheap), the checker can end the handoff to symbolic analysis
and resume type checking (back to rule T-SYM-HANDOFF) as long
as the symbolic locals are consistent with the original Γ for all
symbolic paths (rule C-STACK-TYPEIFY) and the returned symbolic
values have facts consistent with the return type of the expression.

3.4 Concretization and Soundness
An important concern for materialization and summarization is
whether information is transferred soundly between the type analy-
sis and the symbolic analysis (i.e., we have a sound reduced prod-
uct [15]). In particular, materialization “pulls” information from the
heap type invariant on demand during symbolic execution and then
permits temporary violations of the global heap invariant in some
locations. We take an abstract interpretation-based approach [14] to
soundness, which is critical for expressing almost type-consistent
heaps and connecting the soundness of type checking with the
soundness of symbolic analysis. In this section, we describe, via
concretization, the different meanings of object types and their asso-
ciated reachable heaps in the two analyses. Further, we present the
properties of these concretizations that are key to proving soundness
of handoff and materialization/summarization and also state a theo-
rem of intertwined analysis soundness. We provide complete con-
cretization functions and a full proof of soundness in our TR [13].

Concretization. A concrete state consists of a concrete environ-
ment E, mapping variables x to values v, and a concrete heap H,
which is a finite map from addresses a to concrete objects o bundled
with their allocated base types B. We overload N to indicate both
the disjoint heap union of two concrete subheaps and the separating
conjunction of two static symbolic subheaps.

Concretization functions give meaning to abstract constructs by
describing how they constrain the set of possible values and states.
As is standard, we write γ for concretization and overload it for all
constructs, except base types and field types. Object base types and
field types, crucially, have different meanings in the type domain and
symbolic domain. To disambiguate, we write γ(B) for concretization
in the type analysis and γ̃(B) for the symbolic analysis.

Concretization in the type analysis. In the type analysis, the
concretization of an object type is fairly standard: it constrains

8

γ(B),

(H,a)

∣∣∣∣∣∣∣∣∣∣∣

exists o where H(a) = 〈o,B〉 and

À for all methods m
o(m) ∈ γ(B,(p : Tp)→Bret) and

Á for all fields f
(H,o,o(f)) ∈ γ(T F

f).

γ(B � RF
1 , · · · ,RF

n),

(H,o,v)

∣∣∣∣∣∣
(H,v) ∈ γ(B) and

for all refinements Ri
(H,o,v) ∈ γ(RF

i)

(a) Types domain

γ̃(B),

(Hok,Hmat,a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

exists o where Hok
N Hmat (a) = 〈o,B〉 and

À for all methods m
o(m) ∈ γ(B,(p : Tp)→Bret) and

Á for all fields f

f ∈ dom(o) and if a ∈ dom(Hok) then

(H,o,o(f)) ∈ γ̃(T F
f).

γ̃(B � RF

1 , · · · ,RF
n),

(Hok,Hmat,v)

∣∣∣∣∣∣∣
(H,v) ∈ γ̃(B) and

for all refinements Ri

(Hok
N Hmat ,o,v) ∈ γ(RF

i)

(b) Symbolic domain

Figure 5. Concretization of an object base type B = {var f : Tf , def m(p : Tp)→Bret} in the types and symbolic domains. In the symbolic
domain, values stored in the fields of an object in Hok must not be immediately type-inconsistent; values stored in the fields of an object in
Hmat are not constrained. The shaded region highlights the key difference between the concretizations.

not only the value but also the entire heap reachable from that object.
As we show in Figure 5a, the concretization γ(B) of an object type
B = {var f : Tf , def m(p : Tp)→Bret} yields a set of pairs of heaps
and values (addresses). The concretization requires that the address
point to an object o which À has suitable method implementations
(i.e., constrained by the concretization of the method signature
(p : Tp)→Bret on an object of type B) for each method m in the
object type and Á has suitable field values for each declared field
f of type T F

f . We adorn the type with its storage class, F , to make
clear that it is a field type dependent on other fields.

The key property of concretization in the type domain is that
the concretization of a field type T F = B � RF

1 , · · · ,RF
n is mutually

inductively defined with that for base types and thus constrains the
entire heap reachable from that field, in addition to the other fields
of the object. This concretization yields a heap-object-value triple
where the heap and value are constrained by the concretization of the
base type and the entire triple is constrained by the concretization
of each of the field refinements RF

i . Because these refinements are
dependent refinements, they may constrain other fields of the object
in addition to the value of the field in question. For example, a
heap-object-value triple in the concretization of a field refinement
respondsTo g would constrain the g field of the object to store
a string with name m that is a valid method for the (potentially
different) object pointed to by the value. The concretization of a
type environment γ(Γ) is a set of concrete environment-heap (E,H)
pairs where the values stored in local variables are consistent with
the declared types and reachable heaps from the type bindings in Γ.

Concretization in the symbolic analysis. In contrast to the type
analysis, in the symbolic world part of the heap may be explicitly
materialized—and thus immediately type-inconsistent, leaving the
rest of the heap almost type-consistent. To capture this difference,
the symbolic concretization of an object type yields two heaps: Hok

and Hmat, corresponding to a non-deterministic choice of which
objects are in the almost type-consistent heap and which objects
are materialized and thus may have field values differing from their
declared types. We write γ̃(B) here to emphasize concretization of
base types in the symbolic domain. The shaded region of Figure 5b
illustrates the key difference: in the symbolic domain, an object’s
fields are only constrained by the concretization of the field types
if the object is in Hok. If the object is in Hmat, the fields are
guaranteed to exist, but the values stored in them are not constrained.
Because concretization of object types is defined inductively, the
concretization can “opt out” of type constraints for the reachable
subheap at each field dereference, depending on the partitioning

of the full heap into Hok and Hmat. Crucially, this definition of
concretization permits pointers from Hok to Hmat and vice-versa.
Note that regardless of which heap an object resides in, its method
implementations are still constrained by their signatures.

The concretization γ(Ẽ, Σ̃) of a symbolic state Σ̃ = (Γ̃, H̃) with
respect to a symbolic environment Ẽ yields a environment-heap pair
(E,H). There must exist a valuation V : SymVal→Values mapping
symbolic values to concrete values and a partitioning of the heap
H = Hok

N Hmat such that the concretizations of Ẽ, Γ̃, and H̃ all
agree upon. Symbolic fact maps Γ̃ and heaps H̃ both concretize to a
set of valuation-heap-heap tuples where emp in the symbolic heap
requires both Hok and Hmat be empty whereas okheap requires that
Hmat be empty but Hok can be any heap. The singleton heap formula
concretizes to a singleton in Hmat and N is the heap disjoint union
in both Hok and Hmat A symbolic path is a disjunction of singleton
paths P̃ = Σ̃ ↓ x̃; its concretization is similar to that of a symbolic
state, except that it yields a triple (E,H,v) where V (x̃) = v.

Soundness. The soundness of FISSILE type analysis—and in
particular of handoff and materialization/summarization—depends
on the following key properties of concretization.

At handoff, the analysis requires that the explicitly materialized
heap be empty. The following lemma states that under those condi-
tions (i.e., when the entire heap is Hok), the meaning of base types
in the symbolic domain is the same as the meaning of base types in
the type domain:

Lemma 1 (Equivalence of Typed and Symbolic Base Types).
γ(B) =

{
(H,v)

∣∣ (H, ·,v) ∈ γ̃(B)
}

We rely on this result to show that that the T-SYM-HANDOFF and
SYM-TYPE-HANDOFF (Section 3.5) rules are sound.

To show soundness of the M-MATERIALIZE rule, we rely on a
property about the meaning of base types in the symbolic domain:

Lemma 2 (Type-Consistent Materialization for Types). If (Hok
N a :

〈oa,Ba〉,Hmat,v) ∈ γ̃(B) then (Hok,Hmat
N a : 〈oa,Ba〉,v) ∈ γ̃(B).

This lemma considers a value v of type B and a heap containing an
object oa of allocated type Ba stored at address a (informally, a is
in v’s reachable heap, otherwise it is uninteresting). If there is one
concretization of B where a is in the almost type-consistent heap
Hok, then the configuration with a moved to the materialized Hmat

is also in its concretization. In essence, moving the storage for a to
the materialized heap will not cause the type of v to change from
the perspective of the symbolic analysis.

9

SYM-TYPE-HANDOFF

Γ̃, Ẽ
−−−−→
typeify Γ Γ ` e : T Γ

−−−−−−→
symbolize Γ̃

′, Ẽ z̃ /∈ dom(Γ̃′)

Ẽ ` {Γ̃,okheap}e{Γ̃′[z̃ : T [Ẽ]],okheap ↓ z̃}

SYM-METHOD-CALL-SUMMARY
(p)[h/h′] : pret = summary(Γ̃(Ẽ(x)),m)

H̃ ` h~ H̃fr\θ̃ h
θ̃ = θ̃

h] [p : Ẽ(y)]

Ẽ ` {Γ̃, H̃}x.m(y){Γ̃,(H̃fr
N h′[θ̃]) ↓ θ̃(pret))}

Figure 6. Symbolic execution rules to switch to the typed analysis
and to apply symbolic summaries.

A related lemma describes summarization:

Lemma 3 (Soundness of Type-Consistent Summarization for
States). If Γ̃, õ

−−−−→
typeify B and okheap ∈ H̃ and Γ̃(ã) = B � · · ·

then for all Ẽ we have γ(Ẽ,(Γ̃, H̃ N ã : õ))⊆ γ(Ẽ,(Γ̃, H̃)) .

That is, if the symbolic execution determines that a materialized
symbolic object is not immediately type inconsistent, then it can
summarize the symbolic storage for that object back into okheap
(rule M-SUMMARIZE) without unsoundly dropping concrete states.

We rely on the above lemmas to prove soundness of the inter-
twined analysis:

Theorem 1. FISSILE Type Analysis is sound. That is, if E ` [H]e [r]
then

1. If ΓL ` e : T L and (E,H) ∈ γ(ΓL) then r = H ′ ↓ v′ where
(E,H ′) ∈ γ(ΓL) and (E,H ′,v′) ∈ γ(T L); and

2. If Ẽ ` {Σ̃}e{P̃} and (E,H) ∈ γ(Ẽ, Σ̃) then r = H ′ ↓ v′ where
(E,H ′,v′) ∈ γ(Ẽ, P̃).

This is a fairly standard statement of soundness of for both analyses.
Here, E ` [H]e [r] says that in a concrete environment E and
with a concrete heap H, an expression e big-step evaluates to a
result r. For types, if the initial concrete state is described by the
static type environment and the expression type checks, then the
expression evaluates to a heap-value pair (that is, not to an error)
where the final state still conforms to the type environment and the
value conforms to the static type. Similarly, the symbolic analysis
soundly over-approximates the concrete execution and rules out a
faulting error. The proof proceeds by induction on the derivation
of concrete execution and covers an additional judgment form
describing generalized path-to-path symbolic analysis—we provide
full details in our TR [13].

3.5 Fully-Intertwined Type-Symbolic Analysis
As described in Section 3.3, the type analysis can hand off checking
of an expression to the symbolic analysis. We also would like to
perform the opposite handoff from symbolic to type (i.e., apply type
analysis within symbolic analysis). For example, we would like
do this handoff when we encounter a method call during symbolic
analysis to enable modular analysis with only type specifications.

Fortunately, we can employ the same consistency mechanisms
to allow handoff in the other direction, that is, to switch from
symbolic analysis to type checking (rule SYM-TYPE-HANDOFF in
Figure 6). The key constraint is that the entire heap must be
fully type-consistent (okheap). In general, this requirement means
summarization should have been applied so that no locations are
materialized. The entire state is checked type consistent via “typeify”
to Γ before type checking, and then symbolic analysis can resume
by “symbolize”-ing a new symbolic state from Γ and adding an
assumption from the type of the expression.

Suppose this symbolic analysis is the context of an outer flow-
insensitive type analysis. Observe that type environment Γ is derived

solely from the current symbolic execution state and could be more
precise than the outer flow-insensitive invariant. A common scenario
is to leverage symbolic reasoning about guard conditions in an if but
switch to type analysis inside the if body with a stronger invariant
without needing to the make any changes to the type analysis (cf.
occurrence typing [35]). For the reflective call safety client, the
“checked delegate” idiom is quite common where a reflective call
is performed after checking if an object responds to a particular
string—respondsToSelector: in Objective-C.

Symbolic summaries for cross-module bounded violations. On the
other hand, we have seen a handful of cases where a further preci-
sion refinement is needed: when programmers break relationship
refinements across module boundaries, such as when they abstract
the heap with getters and setters. To see how this is a problem, con-
sider the slightly modified version of the update function in which
the direct field access is replaced the following setter functions:

1 def setDel(d)[del :−/del : d] :− = self.del := d
2 def setSel(s)[sel :−/sel : s] :− = self.sel := s

This small change exacerbates the problem of checking relation-
ship refinement safety because now the invariant violation crosses
module (function) boundaries and thus cannot go to a fully type-
consistent heap on method call. To support this scenario, we enable
the programmer to supply additional checked annotations, symbolic
method summaries of the form (p)[h/h′] : pret, that permit symbolic
checking across module boundaries. Here p is a sequence of method
parameter names, h and h′ are summaries of the input heap and
output heap respectively, and pret specifies the method return value.
The input summary gives the form of the part of the heap the method
will operate upon (the footprint) and gives names to the values stored
in the fields of the input heap. The output summary gives the form
of the heap after the method has finished executing, in terms of the
names given in the input heap and the parameters. For example, the
method summary annotation at line 1 says that whatever the del
field stores before setDel is called, after the method is executed
the field stores the value from the d parameter. Since the method is
a setter, the return value is irrelevant. The annotation for setSel is
analogous. Applying the summary for setDel leaves the heap in an
inconsistent state, but then the summary for setSel restores it.

With these annotations, checking the calls to the setters is analo-
gous to checking the field writes as before, except that rather than
applying the symbolic transfer function for field writes, we apply
the method summary. We formalize this in the SYM-METHOD-CALL-
SUMMARY rule in Figure 6. The auxiliary function summary(T,m)
looks up the summary of a method m on a static type T . The judg-
ment H̃ ` h~ H̃fr\θ̃ h splits the heap H̃ into a footprint (specified by
h) and the left-over frame (H̃fr) that the method is guaranteed not to
touch. This frame inference also produces a symbolic map θ̃ h that
captures the symbolic variables that the parameters in the h match
to during the splitting. We then apply this map (combined with the
mapping from parameter names to the symbolic values passed in as
parameters) to the output summary h′ to get the footprint on method
exit and add it back to the frame to get the entire heap on method
exit. We also consult this map θ̃ to look up the value returned as
specified by the summary. We write] for disjoint union of maps
where the result is undefined if the union is not a map. The frame in-
ference is a simple application of subtraction [3] but makes this rule
quite flexible. The developer can choose to refuse access to okheap
in a symbolic summary (as above) to provide a stronger guarantee
to the method’s callers or request it to get a stronger assumption for
checking the method implementation.

We note that the particular kind of symbolic summary that
we describe above (essentially, standard pre-/post-conditions in
separation logic) is not the most interesting point. Other symbolic
analysis techniques could be applied, such as context-sensitive, non-

10

modular reasoning. Rather, we argue that the interest lies in that
heavier-weight symbolic analysis machinery can be applied when
needed without the cost of applying it everywhere, all the time.

Checking Method Implementations. For modular checking, we
type check each method implementation separately according to its
type signature (as is standard). We guarantee that the implementation
of a symbolically-summarized method conforms to its summary
with our symbolic analysis infrastructure, although the summary
checking technique is orthogonal to that for checking relationship
refinements. One could substitute a different approach (e.g. abstract
interpretation or interactive proofs) if desired.

4. Case Study: Checking Reflective Call Safety
We implemented our FISSILE type analysis approach to checking
almost flow-insensitive invariants in a prototype method reflection
safety checker for Objective-C. We evaluate our prototype, a plugin
to the clang static analyzer, by investigating the following questions:
What is the increased type annotation cost for checking reflection
safety? How much does the mixed FISSILE approach improve preci-
sion? Do our premises about how programmers violate relationships
hold in practice? Is our intertwined “almost type” analysis as fast as
we hope? We also discuss a bug found by our tool—surprising in a
mature application. The bug fix that we proposed was accepted by
the application developer.

Table 1 describes our prototype’s performance on a benchmark
suite of 6 libraries and 3 large applications. The OmniFrwks are
noteworthy because they are very large and have been in continuous
development since 1997. The fact that our tool can run on them
provides evidence for the kind of real world Objective-C that we can
handle—something that would be challenging for a purely symbolic
analysis. We discuss these results throughout the rest of this section.

The developer cost to add modular reflection checking. To seed
potential type errors, we first annotated the reflection requirements
on 76 system library functions (i.e., with respondsTo refinements).
These are requirements imposed by the system API enriched to
check for method reflection errors. Then, for each benchmark we
report the total number of developer annotations required, as well
as the average number required per reflective call site, to give an
indication of how much work it would be for developers to mod-
ularly check their use of reflection (column “Total Annotations”).
All annotations are checked—they emit a static type error if their
requirements are not met. Based on this column, we observe that our
benchmarks fall into three categories, depending on how they use
reflection. Clients of reflective APIs, such as Sparkle and ZipKit,
have a very low (essentially zero) annotation burden. In contrast,
benchmarks that expose reflective interfaces, such as SCRecorder
and OAuth have a higher annotation burden. This is perhaps not
surprising, since annotations are the mechanism through which inter-
faces expose requirements to clients. In the middle are those that use
reflection in both ways: parts of OmniFrwks do expose a reflective
API, but they also use internal reflection quite significantly. Our
application benchmarks also fall in this category: they are structured
into modular application frameworks and a core application client.

Over our entire benchmark suite we find that we need 0.10
annotations and 0.01 symbolic summaries per reflective callsite
(row “Combined,” columns “Total Annotations” and “Symbolic
Annotations”). In other words, on average, the programmer should
expect to write one annotation for every 10 uses of reflection
and a single symbolic heap effect summary for every 100 uses
of reflection. Importantly, note that almost all of annotations are
extremely lightweight refinement annotations, like respondsTo—
only 0.05% of methods required a symbolic summary. Even there,
the summaries were very simple because they were on leaf methods,
such as setters. This overall low annotation burden highlights a

key benefit of our optimistic mostly flow-insensitive approach:
whenever the reflection relationship is preserved flow-insensitively,
no method summary is needed. Contrast this to a modular flow-
sensitive approach where a summary is needed on all methods to
describe their potential effects on reflection-related fields.

Improved precision. We verified reflection safety on our bench-
marks using two configurations: a completely flow-insensitive anal-
ysis (no switching) and our mixed FISSILE approach. We then com-
pared the number of static type errors reported by each (columns
“FI Type Errors” and “FISSILE Type Errors”). FISSILE type analysis
sometimes significantly reduces the number of static type alarms
(e.g., ASIHTTP)—and by 29% in our combined benchmark suite.

The number of FISSILE static type alarms ranges from 0 (for
SCRecorder and ZipKit) to 74 (for OmniFrwks, our most chal-
lenging benchmark). Pessimistically viewing our tool as a post-
development analysis, we manually triaged all the reported static
type errors to determine if they could manifest at run-time as true
bugs (see discussion on bugs below) or otherwise are false alarms
due to static over-approximation. The single biggest source of false
alarms were reflection calls on objects pulled from collection classes.
Retrofitting Objective-C’s underlying type system for parametric
polymorphism (like, what has been for Java with generics) would di-
rectly improve precision for this case. At the same time, as discussed
below, the efficiency of FISSILE makes it feasible to instead consider
it as a development-time type checker where a small number code
rewritings or cast insertions are not unreasonable (especially if most
casts would go away altogether with generic types).

Premises. We designed FISSILE type analysis around two core
premises (Section 2.2): (1) that most of the program can be checked
flow-insensitively and (2) that even when a flow-insensitive rela-
tionship between heap storage locations is violated, most other
relationships on the heap remain intact. As Table 1 shows, the num-
ber of times the analysis switches to symbolic execution and back
(column “Successful Symbolic Sections”) is quite low, even for large
programs—Premise 1 appears to hold empirically. The maximum
number of simultaneous materializations (column “Max. Mats.) is
also low—Premise 2 holds as well empirically. Note that we need
more than the single materialization that would be possible with a
non-disjunctive flow-sensitive analysis.

Modular reflection checking at interactive speeds. Our two core
premises hold, enabling FISSILE type analysis to soundly verify
“almost everywhere” invariants quickly. Analysis times range from
less than a second for our smaller (around 1,000 lines of code)
benchmarks to around 9 seconds (for our largest, about 180,000
lines of code). These results (column “Analysis Time”) include only
the time to run our analysis: they do not include parsing or clang’s
base type checker. Our goal with these measurements is to determine
the additional compile-time penalty a developer would incur when
adding our analysis to her existing work-flow. Expressed as a rate
(thousands of lines of code per second), our analysis ranges from
about 5 kloc/s to around 38 kloc/s, with a weighted average of 23.0
kloc/s. In general, the larger benchmarks show a faster rate because
they amortize the high cost of checking system headers (which are
typically more than 100 kloc) over larger compilation units.

Finding bugs. When running our tool on the Vienna benchmark,
we found a real reflection bug in a mature application:
NSNotificationCenter *nc = [NSNotificationCenter defaultCenter];
[nc addObserver:self selector:"autoCollapseFolder"

name:"MA_Notify_AutoCollapseFolder" object:nil];

Here an object registers interest in being notified whenever any code
in the project auto-collapses a folder. This notification takes the
form of a reflective callback: the autoCollapseFolder method
of self will be called. Unfortunately, self has no such method. Our

11

Benchmark Lines Refl. Methods Total Symbolic Check FI FISSILE Successful Max. Analysis Time
of Call Annotations / Annotations / Sites Type Type Errors Symbolic Mats. (Rate)

Code Sites Per Refl. Site Per Refl. Site Errors (% Reduced) Sections

OAuth 1248 7 92 5 / 0.71 0 / 0.00 11 7 2 (- 71%) 7 1 0.24s (5.3 kloc/s)
SCRecorder 2716 12 200 9 / 0.75 4 / 0.33 15 2 0 (-100%) 2 2 0.28s (10.8 kloc/s)
ZipKit 3301 28 165 0 / 0.00 0 / 0.00 28 0 0 (–) 0 0 0.10s (33.0 kloc/s)
Sparkle 5290 40 320 0 / 0.00 0 / 0.00 40 4 1 (- 75%) 3 1 0.67s (7.9 kloc/s)
ASIHTTP 13565 68 707 2 / 0.03 2 / 0.03 68 50 10 (- 80%) 59 2 0.50s (27.2 kloc/s)
OmniFrwks 160769 192 7611 49 / 0.26 2 / 0.01 259 82 74 (- 10%) 9 1 4.25s (37.8 kloc/s)
Vienna 37348 186 2261 24 / 0.13 4 / 0.02 207 59 38 (- 36%) 28 2 2.79s (13.4 kloc/s)
Skim 60211 207 3010 7 / 0.03 0 / 0.00 212 43 43 (- 0%) 0 0 2.49s (24.1 kloc/s)
Adium 176632 587 8723 40 / 0.07 0 / 0.00 648 87 70 (- 20%) 17 1 8.79s (20.1 kloc/s)

Combined 461080 1327 23089 136 / 0.10 12 / 0.01 1488 334 238 (- 29%) 125 2 20.09s (23.0 kloc/s)

Table 1. The “Lines of Code” count includes project headers but excludes comments and whitespace; “Methods” indicates the total number of methods; “Refl.
Call Sites” gives the number of calls to system library methods that perform reflection, either directly or as part of some other operation; “Total Annotations”
lists the total number of annotations and the average number of annotations required per reflective callsite; “Symbolic Annotations” lists gives the number of
symbolic summaries required; “Check Sites” gives the number of program sites where some annotation was checked; “FI Type Errors” indicates the number of
check sites where a flow-insensitive type analysis produces a type error; “FISSILE Type Errors” indicates the number of check sites where we emit a static type
error and the corresponding percent reduction from the flow-insensitive approach; “Successful Symbolic Sections” gives the number of times our analysis
successfully switched from type checking to symbolic execution and back again; “Max. Mats.” gives the maximum number of materialized objects ever present
in the explicit heap (this includes unsuccessful symbolic sections); and “Analysis Time” indicates the speed of our analysis on each benchmark, in both absolute
terms and in lines of code per second. Our benchmarks include OAuth, which performs OAuth Consumer authentication; SCRecorder, which records custom
keyboard shortcuts and is the source of our motivating example in Section 2; ZipKit, which reads and writes compressed archives; Sparkle, a widely-used
automatic updater; ASIHTTP, which performs web services calls; and the OmniFrwks, which provide base functionality to the widely used OmniGraffle
application; Vienna, an RSS newsreader; Skim, a PDF reader; and Adium, an instant message chat client. The “Combined” row treats all of the benchmarks
together as a combined workload. Experiments were performed on a 4-core 2.6 GHz Intel Core i7 laptop with 16GB of RAM running OS X 10.8.2. We used
clang 3.2 (trunk 165236) compiled in “Release+Asserts” mode to perform the analysis and xcodebuild 4.6/4H127 to drive the build.

analysis detects this error and issues an alarm. We reported the bug
to the developers; they acknowledged it as a bug and fixed it (see
https://github.com/ViennaRSS/vienna-rss/pull/85).

Our tool was also useful in finding bugs in beginner Objective-
C code. We used it to statically detect run-time errors in 12 code
snippets culled from mailing lists and discussion forums. These
novice reflective errors fell into three different categories: (1) typos
in selector names, (2) intending to reflectively call a method with a
selector stored in a variable but instead passing in a constant selector
with the name of the variable, and (3) passing the wrong responder
into a reflective call, typically a field of self instead of self itself.
These results show that our tool can statically detect a common
class of novice errors; they provide evidence in favor of including
reflective call checking with FISSILE type analysis in the compiler.

5. Related Work
Dependent refinement types [20, 38] enable programmers to restrict
types based on the value of program expressions and thus rule out
certain classes of run-time errors, such as out-of-bounds array ac-
cesses. Extending dependent types to imperative languages [34, 37]
has generally led to flow-sensitive type systems because mutation
may change the value of a variable referred to in a type. The
high burden that flow-sensitive type annotations impose on the
programmer motivates sophisticated inference schemes [31], of
which CSOLVE [32] is perhaps the closest work to ours. In con-
trast to CSOLVE, which performs flow-sensitive checking of in-
ferred flow-sensitive types with at most one materialization, we
use path-sensitive checking of flow-insensitive annotations [12]
and support arbitrary materialization with a disjunctive symbolic
analysis, as opposed to proving non-aliasing for one materializa-
tion (e.g., [1, 2, 18]). DJS [11] checks dependent refinements in
JavaScript, including the safety of dynamic field accesses—a prob-
lem similar to reflective method call safety—but supports only single
materialization and employs a flow-sensitive heap.

There has been a recent explosion in techniques (e.g., [7, 22]) that
have significantly improved the effectiveness of symbolic execution.
The SMPP approach [24] leverages SMT technology combined with
abstract interpretation on path programs to lift a symbolic-execution–

based technique to exhaustive verification. This technique can be
seen as applying a fixed one level of analysis switching between
a top-level symbolic executor and an abstract interpreter for loops.
Our approach of switching between type checking and symbolic
execution is similar to the MIX system [25] for simple types. A
significant difference is that our approach enables the symbolic
executor to leverage the heap-consistency invariant enforced by the
type analysis through a type-consistent materialization operation,
which is critical for our rich refinement relationship invariants,
whereas the symbolic and type analyses in MIX interact minimally
with respect to the heap. The notion of temporary violations of an
invariant is also reminiscent of the large body of work on object
invariants (see [17] for an overview). We remark on two perspective
differences that make FISSILE complementary to this work. First,
the points where the invariant is assumed and where they may be
violated is not based on the program structure (e.g., inside a method
or not) but instead is based on the analysis being applied (i.e., type
or symbolic). Second, the symbolic analysis takes a more global
view of the heap and decides specifically which objects may violate
the global type invariant. Issues like reentrancy and multi-object
invariants are not as salient in FISSILE, but are possible at the cost
of separate symbolic summaries or more expensive, disjunctive
analysis in certain complex situations.

On materialized heap locations, our symbolic analysis works
over separation logic [3, 30] formulas. We define an on-demand
materialization [33] that is universal in separation-logic–based
analyzers [4, 9, 16]. However, our materialization operator pulls out
heap cells that are summarized and validated independently using
a refinement type analysis. Bi-abductive shape analyses [8, 23] are
modular analyses that try to infer a symbolic summary for each
method. Our analysis is modular using a fast, flow-insensitive type
analysis with few uses of symbolic summaries. Bi-abduction and our
technique could complement each other nicely in that (1) we do not
require symbolic summaries on all methods—only those that violate
type consistency across method boundaries—and (2) bi-abduction
could be applied to generate candidate symbolic summaries.

Most prior work on reflection analysis has focused on whole-
program resolution: determining, at a reflective site, what method
is called (either statically [6, 10, 36] or dynamically [5, 21]).

12

https://github.com/ViennaRSS/vienna-rss/pull/85

We address the problem of modular static checking of reflective
call safety: ensuring that the receiver responds to the selector, in
languages with imperative update. Politz et al. [29] describe a
type system that modularly checks reflection safety by combining
occurrence typing [35] with first-class member names specified by
string patterns. In contrast, we treat the “responds-to” relationship
as first-class (i.e., we permit the user to specify it with a dependent
refinement), allowing us to (1) check relationships between mutable
fields and (2) express that an object responds to two completely
unknown (i.e. potentially identical) selectors. Livshits et al. [27]
assume reflection safety and leverage this assumption to improve
precision of callgraph construction.

6. Conclusion
We have described FISSILE type analysis, which intertwines fast
type analysis over storage locations and precise symbolic analysis
over values to efficiently, effectively, and modularly prove relation-
ship properties. We have evaluated FISSILE using an interesting
safety property—reflective method call safety. The key technical
enabler for our analysis is materialization from an almost type-
consistent heap. On a benchmark suite consisting of commonly-used
Objective-C libraries (6) and applications (3), we find that our ap-
proach is capable of finding confirmed bugs in both production and
beginner code. It has a balanced annotation burden that is negligible
for clients of reflection and moderate (up to 0.75 annotations per
reflective call site) for reflective interfaces.

FISSILE type analysis starts with the optimistic assumption
that global flow-insensitive relationship invariants hold almost
everywhere—it only has to use precise and expensive reasoning
for those few program locations that violate a relationship. Contrast
this to traditional modular flow-sensitive analyses, which require all
methods to specify their effect on the heap to rule out the pessimistic
assumption that relationship invariants could be violated anywhere.
Our approach permits the vast majority (99.95%) of methods to
avoid any annotations related to heap effects. Checking most of
the program flow-insensitively allows FISSILE to validate reflective
method call safety at interactive speeds (5 to 38 kloc/s with an
overall rate of 23.0 kloc/s over our benchmark suite).

Acknowledgments
We thank Sriram Sankaranarayanan, Amer Diwan, Jeremy Siek, the
CUPLV group, and Ranjit Jhala for insightful discussions, as well as
the anonymous reviewers for their helpful comments. This material
is based upon work supported by the National Science Foundation
under Grant Nos. CCF-1218208 and CCF-1055066.

References
[1] A. Ahmed, M. Fluet, and G. Morrisett. L3: A linear language with

locations. Fundam. Inform., 77(4), 2007.
[2] A. Aiken, J. S. Foster, J. Kodumal, and T. Terauchi. Checking and

inferring local non-aliasing. In PLDI, 2003.
[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with

separation logic. In APLAS, 2005.
[4] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies,

and H. Yang. Shape analysis for composite data structures. In CAV,
2007.

[5] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. Taming
Reflection: Aiding static analysis in the presence of reflection and
custom class loaders. In ICSE, 2011.

[6] M. Braux and J. Noyé. Towards partially evaluating reflection in Java.
In PEPM, 2000.

[7] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems
programs. In OSDI, 2008.

[8] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. In POPL, 2009.

[9] B.-Y. E. Chang and X. Rival. Relational inductive shape analysis. In
POPL, 2008.

[10] A. S. Christensen, A. Møller, and M. I. Schwartzbach. Precise analysis
of string expressions. In SAS, 2003.

[11] R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript.
In OOPSLA, 2012.

[12] J. Condit, M. Harren, Z. R. Anderson, D. Gay, and G. C. Necula.
Dependent types for low-level programming. In ESOP, 2007.

[13] D. Coughlin and B.-Y. E. Chang. Fissile Type Analysis: Modular
checking of almost everywhere invariants (extended version), 2013.

[14] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In POPL, 1977.

[15] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In POPL, 1979.

[16] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis
based on separation logic. In TACAS, 2006.

[17] S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A
unified framework for verification techniques for object invariants. In
ECOOP, 2008.

[18] M. Fähndrich and R. DeLine. Adoption and focus: Practical linear
types for imperative programming. In PLDI, 2002.

[19] C. Flanagan. Hybrid type checking. In POPL, 2006.
[20] T. Freeman and F. Pfenning. Refinement types for ML. In PLDI, 1991.
[21] M. Furr, J.-h. D. An, and J. S. Foster. Profile-guided static typing for

dynamic scripting languages. In OOPSLA, 2009.
[22] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated

random testing. In PLDI, 2005.
[23] B. S. Gulavani, S. Chakraborty, G. Ramalingam, and A. V. Nori.

Bottom-up shape analysis. In SAS, 2009.
[24] W. R. Harris, S. Sankaranarayanan, F. Ivancic, and A. Gupta. Program

analysis via satisfiability modulo path programs. In POPL, 2010.
[25] Y. P. Khoo, B.-Y. E. Chang, and J. S. Foster. Mixing type checking and

symbolic execution. In PLDI, 2010.
[26] V. Laviron, B.-Y. E. Chang, and X. Rival. Separating shape graphs. In

ESOP, 2010.
[27] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for Java. In

APLAS, 2005.
[28] M. J. Parkinson. Local Reasoning for Java. PhD thesis, University of

Cambridge, Computer Laboratory, 2005.
[29] J. G. Politz, A. Guha, and S. Krishnamurthi. Semantics and types for

objects with first-class member names. In FOOL, 2012.
[30] J. C. Reynolds. Separation logic: A logic for shared mutable data

structures. In LICS, 2002.
[31] P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI,

2008.
[32] P. M. Rondon, M. Kawaguchi, and R. Jhala. Low-level liquid types. In

POPL, 2010.
[33] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems

in languages with destructive updating. ACM Trans. Program. Lang.
Syst., 20(1), 1998.

[34] R. Tate, J. Chen, and C. Hawblitzel. Inferable object-oriented typed
assembly language. In PLDI, 2010.

[35] S. Tobin-Hochstadt and M. Felleisen. The design and implementation
of Typed Scheme. In POPL, 2008.

[36] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. TAJ:
Effective taint analysis of web applications. In PLDI, 2009.

[37] H. Xi. Imperative programming with dependent types. In LICS, 2000.
[38] H. Xi and F. Pfenning. Dependent types in practical programming. In

POPL, 1999.

13

	Introduction
	Overview
	Insufficient: Flow-Insensitive Typing of Refinements
	Tolerating Violation of Relationship Refinements
	Modular Checking and Symbolic Summaries

	Storage Type and Symbolic Value Analysis
	Instantiation: The Reflection Checking Type Refinement
	Symbolic Analysis State and Handoff
	Materialization from Type-Consistent Heaps
	Concretization and Soundness
	Fully-Intertwined Type-Symbolic Analysis

	Case Study: Checking Reflective Call Safety
	Related Work
	Conclusion

