
.

...... Optimizing Dynamic Race Detection With Hash Consing
David Moon ’16 (dm7@williams.edu) and Stephen Freund (freund@cs.williams.edu)

Department of Computer Science at Williams College
August 14, 2015

.
Multithreaded Programs and Race Conditions..

......

Multithreaded programs run multiple threads simultaneously,
the steps of which are interleaved by a scheduler.
Each thread can read and write to memory.
Threads may interfere with each other if they access the same
memory location at the “same time”.
This is called a race condition and causes non-deterministic
behavior.

.
A Broken Bank Account and Two Interleavings..

......

Deposit:
t1 = bal
bal = t1 +10

Withdraw:
t2 = bal
bal = t2 -10

Good Sched:
bal == 0
t1 = bal
bal = t1 +10
t2 = bal
bal = t2 -10
bal == 0

Bad Sched:
bal == 0
t1 = bal
t2 = bal
bal = t1 +10
bal = t2 -10
bal == -10

.
Locking to Control Scheduling..

......

Programmers can use locks to avoid bad schedules.
Locks are objects which can only be held by a single thread at
any time, forcing all other threads to wait their turn.

.
Bank Account with Locking..

......

Deposit:
acquire lock
t1 = bal
bal = t1 +10
release lock

Withdraw:
acquire lock
t2 = bal
bal = t2 -10
release lock

Schedule:
bal == 0
acquire lock
t1 = bal
bal = t1 +10
release lock
acquire lock
t2 = bal
bal = t2 -10
release lock
bal == 0

.
Race Conditions Are Still A Problem..

......

Writing correct multithreaded programs is hard!
Programmers often forget to acquire the proper locks.
This can lead to subtle bugs that produce observable error only
on certain interleavings, making them hard to detect.

.
Automatic Dynamic Race Detection..

......

As the program executes, the detector builds a happens-before graph
to capture the relative order of steps taken by different threads.
This order is determined by the locking operations.
For example, a release lock operation happens before the next
acquire lock operation in the executed interleaving.
The program may have many other interleavings with the same
happens-before graph.
A race condition between two memory accesses is present if there is
no path between them in the graph, which means there exist other
interleavings where the accesses occur opposite the observed order.

.
Happens-Before Graph & Shadow State..

......

Thread1: Thread2:

1: ..acquire lock

2: ..x = 1

3: ..release lock

4: ..acquire lock

5: ..x = 2

6: ..release lock

7: ..x = 3

..

..

C1 C2 Cx
<4,0> <0,8> <0,0>

<4,0> <0,8> <0,0>

<4,0> <0,8> <4,0>

<5,0> <0,8> <4,0>

<5,0> <4,8> <4,0>

<5,0> <4,8> <4,8>

..<5,0> <4,9> ..<4,8>

race!.........

time

..
In the happens-before graph on the left, line 2 happens before line 5.
On the other hand, line 5 and line 7 form a race condition.
For efficiency, a race detector represents the happens-before graph
as the shadow state above on the right:

Clock vector Cx = <4,8> for memory location x after line 5 indicates that x
was last accessed by Thread1 at time 4 and by Thread2 at time 8.
Clock vector C2 = <4,9> for Thread2 after line 6 records at the second index
Thread2’s current time (9) and, at the first index, the time (4) of Thread1’s
last operation that happens before the current operation of Thread2
A race is detected at the write to x in Line 7, Thread1, by observing that the
second clock in C1 is smaller than the second clock in Cx .

.
Problem: Lots o’ State..

......
Unfortunately, the analysis above incurs a large space overhead
because it allocates a shadow state object for each memory location.

.
Our Work: Saving Space with Hash Consing..

......

Oftentimes many shadow state objects have the same value.
The following program execution leaves array elements 1
through 99 with the same shadow state value.

Thread1: Thread2:
acquire lock
for (i=0; i <100; i++)

a[i] = 0
release lock

acquire lock
a[0] = 1
release lock

Hash consing avoids creating multiple
objects for the same value.
Using a hash-consed shadow state greatly
reduces our space overhead. The more
shadow state values repeat, the more
hash consing reduces our space overhead.
We implemented hash consing in the
FastTrack dynamic race detector.

..

..i ..ashadow

..0 ..1<6,7>

..1 ..0<6,0>

..2 ..0<6,0>

..3 ..0<6,0>

..4 ..0<6,0>..

..98 ..0<6,0>

..99 ..0<6,0>

.
.

.

.

.

.

.

.

.

.

.

.

..

..i ..ashadow

..0 ..1<6,7>

..1 ..0

..2 ..0

..3 ..0<6,0>

..4 ..0

..98 ..0

..99 ..0

.
.

.

.

.

.

.
Preliminary Results..

......

Tests on the Java Grande benchmarks show orders of
magnitude reduction in the shadow state size.

...
..Series . SOR. LUFact. Crypt.

Spars
eMatm

ult. MolDyn.
Monte

Carlo. RayT
race

r
. mean.

102

.

103

.

104

.

105

.

106

.

107

.

108

.

109

.

nu
m

be
ro

fa
llo

ca
te

d
sh

ad
ow

st
at

e
ob

jec
ts

.

...FastTrack

...FastTrack w/ hash consing

.
Future Work..

......

Assess overall memory savings.
Hash consing increases time overhead because it requires table
lookups and copying of shadow state at each memory access.
We plan to optimize our hash consing methods to address this.

This research was supported by NSF grant 1421051. Thanks to James Wilcox ’13 for help with background material and the poster template.

